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INTRODUCTION

This report summarizes work done under Contract F04611-86-C-0008

during the period 1 March 1986 through 30 September 1988. The

principal goals were to develop state-space models and computational

algorithms for control of beam and plate type structures, and, more

generally, to increase the understanding of the basic problems

associated with this development. The state-space approach is based

on a distributed parameter model of the structure that includes the

fundamental partial differential equations without modal truncation.

The approach is to use basic physical principles to write down

the governing partial differential equations, construct a state-space

model from the governing equations, formulate the optimal control

problem in terms of the state-space model, develop a convergent ap-

proximation scheme and conduct numerical experiments to test the method.

The basic view is that it is best to avoid the approximation step until

it is required to compute. This process is carried out for various

beam models, with and without actuator dynamics, and for a simple -

rectangular clamped plate. The basic beam systems are examined and

then the effect of delays are studied.

In addition to the basic program we conducted a survey of joint

dynamic models and attempted to evaluate the feasibility of constructing

a comprehensive computer code that would be general enough to handle

more complex structures composed of basic beam and plate elements.
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This report if divided into nine parts. In the next section we

present a general discussion of the types of control problems and

structures we considered. In the section EQUATIONS OF MOTION we

summarize the basic governing differential equations for the various

structures, using Euler-Bernoulli and Timoshenko beam theories and

simple plate theory, and include actuator dynamic equations. In the

STATE SPACE MODEL section we construct the appropriate state-space

models by presenting the 6tate space, the dynamic state operator and

the input operator for each problem. We conclude this section by

noting the general framework that covers all the problems considered

in this study. THE CONTROL PROBLEM section contains a review of the

basic distributed parameter Linear-Quadratic Regulator (LQR) problem.

The output operators are detailed for each of the structural control

problems. The specific form of the optimal gain operator is presented

for each beam and plate problem. The NUMERICAL PROCEDURES section

begins with a review of the basic approximation theory needed to solve

the LQR problems. Also included in this section is a brief description

of the particular schemes used in each problem and a comparison of

open-loop systems for Euler-Bernoulli and Timoshenko theories. A

survey of joint modeling is given in the JOINT MODELING section.

Numerical results for the control problems are presented in the

NUMERICAL RESULTS section and the results of our feasibility study

are summarized in SOFTWARE ISSUES. The last section is devoted to

closing remarks and suggestions of problem areas that need further

study.
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DESCRIPTION OF BEAM AND PLATE PROBLEMS

We consider a variety of mathematical problems in which the

fundamental objective is to quickly damp vibrations in various

structures. We concentrated our effort on two basic structures; a

beam with a tip-body at one end and a clamped rectangular plate.

The beam structure consists of a beam with a tip-body at one

end. The other end of the beam is attached to a hub which is free to

rotate about a fixed axis. We study only motions in the plane normal

to the hub's rotation axis. Four versions of the problem are studied

in all. Firstly, we employ two distinct theories to model beam motions.

The simplest and most common is the Euler-Bernoulli theory which does

not account for strain energy due to shear. In this model the elastic

energy is solely due to normal stretching and compression of the beam

"fibers" as the beam assumes a deformed shape. A more complete theory,

the Timoshenko model, includes strain energy due to shearing and

kinetic energy due to rotation of the beam face elements.

The other important feature we study is the model for the torque

actuator. In the simplest case one imagines an ideal actuator that

can instantly generate the amount of torque required by the control

law. An alternative model includes a second-order actuator modelled

with a delay differential equation. If the delay terms are set to

zero one has a usual second-order actuator model; however, the effect

of delays (due to computational requirements, for example) are shown

to be important.

3



The two beam models (Euler-Bernoulli and Timoshenko) are combined

with the two actuator models (ideal and second-order delayed) to

produce four distinct beam models to be studied. In each case the

objective is to derive a control law in state-feedback form. The pur-

pose of the control law is to enhance the decay-rate for the unwanted

structural vibrations.

The plate problem considered concerns transverse motions of a

rectangular plate which is clamped along its edges. The "control" is

produced by modulating the amplitude of a distributed force with fixed

spatial variation. That is, the force is given by

f(tx,y) - u(t) O(x,y)

where O(x,y) is given and u(t) is the control. As before, the objec-

tive is to formulate a state-feedback control law that will

substantially improve the rate at which vibrations decay.

4



EQUATIONS OF MOTION

In this section we present the equations of motion for the five

problems considered in this report. In particular, we summarize the

equations for the beam with tip-body and the clamped plate for the

following cases:

" An Euler-Bernoulli beam

" A Timoshenko beam

• An Euler-Bernoulli beam with actuator dynamics

" A Timoshenko beam with actuator dynamics

" An isotropic rectangular plate

A detailed derivation of the Euler-Bernoulli model is given in Ref. 2.

Inclusion of actuator dynamics are discussed in Ref. 2 and the extension

to the Timoshenko beam model follows directly from Ref. 1, Ref. 2 and

Ref. 3. The reader is referred to Ref. 4 and Ref. 5 for detailed

discussions of plate modeling.

BEAM EQUATIONS

We present the various mathematical models of the beam structure

shown in Figure 1. It is assumed that the structure is pivoting about

a fixed pivot at point 0, and that the motion is in a plane. The

development is achieved by direct application of Newton's Laws to

individual members of the structure with the resulting equations summed

to determine the overall motion.

The structure consists of three parts, the main frame, or mass A,

the beam, or mass B, and the end mass, or mass C. The main frame is

5
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assumed to be a rigid body pivoting about point 0. The beam is assumed

to be flexible and rigidly attached to the main frame as a cantilevered

beam. The end mass is rigidly attached to the end of the beam so that

it moves and rotates with the end of the beam. Finally, the attached

point is assumed to be at the center of mass of the end mass.

The coordinate system to be used is fixed in the main frame and

rotates with it. The origin is at point 0 with the x axis pointing

along the undeflected beam, the z axis, the axis of rotation, and the y

axis completing the right hand set. The governing equations depend of

course on the assumptions about the beam. We summarize these equations

for the four cases listed above.

Euler-Bernoulli Beam Theory

It follows from Ref. 2 that the motion of the structure is

governed by the system of equations

6()-Wt (1)

IA (t) = E uxx (t,0) + H Ct) (2)

m c[L(t) + ;(t)] - El u xxx(t,L) , (3)

I c[ (t) + 4(t)] -- El u xx(tst) (4)

c xxx

u t (t,x) + XL(t) - -!I u xxx(t~x) (5)

where u(t,x) denotes the deflection of the beam, e(t) is the angle of

hub rotation, n(t) is the relative lineal velocity of the tip mass,

(t) is the relative angular velocity of the tip mass due to deflection

and MA(t) is the applied moment at the hub.

7



Since the beam remains joined to the hub, one has the canti-

levered boundary conditions

u(t,O) - ut (t,o ) - 0
ux (t.0) - Uxt(tO )  - 0(6)

and the integrity of the upper joint requires the boundary conditions

u t(tL) n (t)

xt(tL) (7)

It is important to note that both (6) and (7) are geometric (i.e.

essential) boundary conditions.

Timoshenko Beam Theory

The Timoshenko beam model includes the rotary inertia and shearing

deformations. If u(t,x) denotes the deflection of the beam, then the

total slope u x(t,x) is given by

u (t,x) = P(tx) + $(t,x) (8)
x

where P(t,x) is the slope of the deflection curve when shearing is

neglected and a(t,x) is the angle of shear at the neutral axis. The

bending moment M(t,x) and shear force V(t,x) are given by

M(t,x) - El 'x(t,x) (9)

and
V(t,x) V - K'AG 0(t,x) - - K'AG [u x(tx) - (t,x)] , (10)

respectively. Here A is the cross-section area, K' is a constant

depending on the shape of cross-section and G is the modulus of

elasticity in shear (Ref. 3).

8



The equations for the Timoshenko beam become

( =(t) = W(t) (1l)

IAw(t) = E1 yx (t,0) + M A(t) (12)

m [L (t) + ;(t)] = -K'AG [U (t,L) - i(t,L)] (13)

I [ (t) + I(t)] - El (t,L) (14)

[u tt(t,x) + x (t)] = K'G [u xx(t,x) - x(tx)] (15)

pl [itt(t,x) + ((t)] = E1 uxx(t,x) + K'AG [ux(t,x) - P(t,x)] (16)

Again, one has the cantilevered boundary conditions at the hub, x = 0,

u(t,O) = u t(t,O) = 0

(t,O) = }t(t'O) = 0

Also, the upper joint requires the boundary conditions

u t (t,L) = I(t) (18
(18)

qt(tL) = c(t)

Euler-Bernoulli Beam with Actuator Dynamics

Returning to the Euler-Bernoulli model (1) - (5) we add a system

of equations that incorporates actuator dynamics with a delay. Thus,

the total system for the Euler-Bernoulli beam with tip-body and

delayed actuator dynamics becomes

(t) " wt) (19)

A u(t,O) + YA[cl x1(t) + c' x2(t)]

9



[Lw(t) + r(t)] - uxx (t,L) (21)
c

[W(t) + 1(t)] T] ( Uxt 22
C

~2
[Ux(t,x)] = -- [u (tx) + xw(t)] (23)a;t x 2  

(

ax 2

with general second-order actuator model

X1 (t) - x2 (t) (25)

2 (t) - ajjxj(t) + alZx 2 (t) + a21xl(t-r) + a22x2 (t-r)

+ bluC(t) , (26)

where u (t) is the commanded input to the actuator and M A(t)cA

cjxl(t) + c2x2(t) is the output. The time delay r > 0 was included to

illustrate the problems one can encounter if numerical schemes for

control designs are improperly constructed. Note that if a2 1 - a2 2 - 0,

then (25) - (26) is a second order linear actuator.

Timoshenko Beam with Actuator Dynamics

If one rewrites (11) - (16) and adds (25) - (26) to these equa-

tions, we obtain the following equations

W(t) - (t) (27)

(t) - E(A) pX(t,0) + (IA) [clx 1 (t) + c2x2(t)] (28)

ILw(t) + ;(t)] ( - [ U(t,L) (29)

m- u L

10



[w(t) + (x1 T (t,L) (30)

[ut (t,x) + x (t)] EK'G [u- [x(t'x) -x(t'x)l (31)

[tt(t,x) + (t)I = 0J(t,x)+ [ux(t,x)- p(t,x)] (32)

x1 (t) = x2(t) (33)

x 2 (t) = ajjxj(t) + al2x2(t) + a2lxl(t-r) + a22x2(t-r)

+ b1 uc (t) , (34)

where again MA(t) = CIX 1 (t) + c2x2 (t) is the output to the actuator

(33) - (34).

Isotropic Rectangular Plate

Figure 2 shows a plate with uniform thickness h that is assumed

small in comparison with its other dimension. The x-y plane is taken

to be the (undeflected) middle plane of the plate. Deflections in the

z direction are assumed small in comparison to the thickness and the

normals to the x-y plane are assumed to remain normal to the deflected

middle surface during vibrations. The governing equation for the

loaded undamped plate becomes

m u (t,x,y) + DA2u(t,x,y) = f(t,x,y) (35)

tt

f Eh
where m is the mass per unit area, D = (12(1- v v is Poisson's

ratio and f(t,x,y) is an applied load. Here A is the Laplacian operator

a2  a2
+ =  -+- (36)

ax 2  ay 2

so that

11



z

a

Figure 2. Rectangular Plate to be Controlled
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2 :) 4

A2 u(t,x,y) = - u(t,x,y) + - u(t,x,y) + - u(txy)] (37)
D Xt ax 2 y2  .3y

Let 4 = (O,a) > (O,b) denote the surface of the plate and S2

denote the boundary (i.e. edges) of the plate. Then, (35) must hold

for all t > 0 and (x,y) e 'I and the clamped boundary conditions are

given by

u(t,x,y) = Au(t,x,y) = 0, (xy) e 9 (38)

We shall consider a control problem for the plate equation (35) with

boundary conditions (38).

13/14



STATE SPACE MODELS

In this section we construct the state-space models for each of

the problems discussed above. These models are used later to formulate

control problems, provide explicit representations of optimal control

laws and as a basis for constructing computational algorithms.

EULER-BERNOULLI BEAM

In order to construct a state-space model, equation (5) is first

written in the form

au (tx)] = a2 [u (tx) + x.W(t)]

(39)

[u (t,x) + x.w(t)] - -EI 32 [atut P [U xxtx) "

As noted in Ref. 5, this system suggests that the functions x Uxx (t,x)

and x + [u t(t,x) + xw(t)] are natural state components. Thus, the

"state vector" y(t) is defined to be

e(t)

W(t)

n(t) + LW(t)
y(t) - (40)

&(t) + W(t)

U xx(t,x)

ut(t,x) + xW(t)

The appropriate state space is the Hilbert space

R x x R x R x L2 (0,L) x L2(0,L) (41)

15



with inner product

<ygy>y = y 1 yv + IA yo)y, + m y 3y 3 + I Y4Y

fL 
L

+ E1 Y5(X)y5 (x)dx + F yr 6 (x)Y6 (x)dx (42)
0 0o

The space Ij with inner product (42) is a Hilbert space and lil =

1Y 7Y> defines a norm on U. The product <y,y> is essentially the

mechanical energy in the physical system at state y.

Let 6p denote the operator that acts on functions and produces

the value of that function at point p, i.e. 6p0(.) - (p). Moreover,

D denotes the partial differential operator -L . Define the operatorx ;x

AE on D(AE) = j by

o 1 0 0 0 0

S0 0 0 E 6
I A

o o O 0 EI 6°D 0

A Ec (43)

0 0 0 -E L  0
C

o 0 0 0 0 D
x

o 0 0 0 -EI D 2 0L x

where the domain of AE is given by

T(Yl'Y ,Y3,Y ,Ys(') Y6( ' ) ) T e y / Ys, H(0,L),

D(kE) = ~Y6(O) = 0 , y6(0) = y2 , y6 (L) = Y3 ,y'(L) Y4 (f

Let BE be the input operator BE: R-, gdefined by

16



0

1
A

0

B (45)

0

0

0

and consider the system in y given by

-(t) AEY(t) + BEMA(t) (46)

It was shown in Ref. 1 that AE generates a C0-semigroup e
AE t on and

that the variation of parameters formula

y(t) - eAEty(0) + ft eAE(t - s ) BEMA(s)ds (47)

provides weak solutions of the partial differential equations (1) -

(6) with initial data in g. In particular one has the following result.

THEOREM 1. If y(0) - y e D(AE) and MA(t) belongs to Lj(0,T),

then y(t) defined by (47) is a solution to the

system (1) - (5) with initial data yo.

Theorem 1 provides the basic theoretical result that allows one

to construct convergent numerical schemes for control design (see Refs.

1, 2 and 6-15). Later we augment the state space model (46) by

adding the actuator dynamics with delays.
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It is important to understand that the statement that YO e D(AO)

is initial data for (1) - (5) means that

YO = col (OWOOcLY 0 , Uo(X), Vo(X))

satisfies (44) and the solution of (1) - (6) satisfies the initial

condition 6(0) - 60, w(O) - wo, [Lw(O) + ri(O)] - a0, [w(O) + &(0)] - yo,

uxx(0,x) - u0 (x) and [ut (O,x) + xW(O)] = v0 (x).

TIMOSHENKO BEAM

We first rewrite the second order equations (15) and (16) as the

first order system

T- U (tx) + xw(t)I 0 wx lux x)  [t-)- U(t'x)] (48)

a 1 bP(t~x) + W(t)] - L ( j X-(t,x) + (K'AG) [u (t,x)

- (tx)] (49)

7- x(tx) = -- [ (t,x) + W(t)] (50)
ax t

a- [u (t'x) - (t,x)] [- [u(tx) + xw(t)) - [it(t,x) + w(t)]. (51)
at x ax t t

Let w(t) denote the "state-vector"
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u(t)

L(t) + r(t)

W(t) + ,"(t)

w(t) - (52)
u t(tx) + xW(t)

t ( t , x ) + W(t)

4 (t,x)x

u X(t,x) - (t,x) J

The appropriate state space for Timoshenko beam is the Hilbert space

W= R x R x R R L2 x L2 X L2 x L2 , (53)

where L 2  L 2(O,L), and the inner product is given by

<ww>i = WIW 1 + lAW2W2 + mcW3 3 + IcW4W4

+ (Ap w 5(x) 45(x) + IP w6(x) v6(x)} dx (54)
J0

+ L {EI w7(x) w7(X) + (K'AG) wB(x) w9 (x)}dx0

Here again (54) defines an inner product on (53) and <w,w-m 
= {lw112

is essentially the mechanical energy in the physical system at state w.

Define the differential operator I.A with domain D(AT) = W by
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0 I 0 0 0 0 0

0 1 0 0 0 0 EI 0 0

o 0 0 0 0 0 0 (-K'AG)

0 o 0 0 0 0 00'AG}

Ar I 1 ),L K (55)
0 0 0 0 0 0 0 DKG

Dx

0 0 0 0 0 D 0 0
x

0 0 0 0 D -1 0 0

where the domain of Ar is given by

w = (wj,W,W,,WWr()w.) ,(.),w 7 (.),wl(.)) T F W/

D(VA) -w(-), w(.), w 7 ('), w 8 () c HI(OL) and (56)

ws(O) = 0, w 5 (L) = w3, w 6 (0)=w-, w6(L) :w,

Let BT be the input operator O R -W U defined by

f0

1

0

0
IT 0 (57)

0

0
0
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and consider the system in I given by

w(t) = AT w(t) + DT MA(t) . (58)

The following result may be established using the methods in Ref. 1.

THEOREM 2. The operator BT is bounded and AT generates a Co-semigroup

e " r t on the Hilbert space W.

It also follows that if w0 e D(AT ) then

w(t) = eATt w0 + f eT(t5) BT MA(S) ds (59)
0

provides weak solutions to the Timoshenko beam equations (11) - (16)

with initial data w0 .

We turn now to the addition of the actuator dynamics. The

general second-order model (25) - (26) will be written as a system and

added to the state-space models for the Euler-Bernoulli beam (46) and

the Timoshenko beam (58), respectively.

EULER-BERNOULLI BEAM WITH ACTUATOR DYNAMICS
T]T ]T

Let x [x l x 2 ] T
, C1 - [c 1 ,c 2 ] , B = [0,b I T and

A, - A7
all a12  a 2 i a2 2

The system (25) - (26) can be written in matrix form as

c(t) = Ajx(t) + A~x(t-r) + Bluc(t) (60)

and the applied torque MA(t) is given by

MA(t) = Cjx(t) (61)
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The addition of actuator dynamics to the state-space model for the

Euler-Bernoulli beam is accomplished by combining (46), (60) and (61)

into "state-space form"

y(t) - AEy(t) + BE Clx(t)

x(t) - AlX(t) + A2x(t-r) + Bluc(t) (62)

In order to show that the augmented system (62) is well-posed we must

introduce an augmetted state-space. We consider two distinct cases,

A2 - 0 and A2 0 0.

Case 1: No Delay

Let 0 denote the Hilbert space
E

SxI R x R x R 2  (63)
E

with inner product

<Zz -OE <y,y> 9 + X1X I + x 2 X2 (64)

T
where z 0 - (Yx 1 ,x2) and 0 ,1,2).

Define A0 on 1(A0) Z 0 by

D(A 0) {{ e D(AE) (65)
x

and

AE BEC

AO . (66)
0 A0

Let 0 Rt 1 E0 be defined by
E

(67)

22



The augmented system (62) becomes

;o(t) = A0 z(t) + Bouc(t) (68)

Moreover, one can easily establish the following result.

THEOREM 3. The operator B0 is bounded and A0 generates a C -semigroup00

e on the Hilbert space zE"

The case with delays is more complex.

Case 2: Delayed Actuator

Let Z denote the Hilbert space

EE =E x L 2 (-r,O;r,2 ) (69)

with inner product

r0
.Zz>E = <zZOiZ0 OE + <(s), ;(s)> ds (70)

-r

where z - (zu,, )T e 2 E and z (0,)T e IE, respectively. Define A

on D(A) : ZE by

D(A) = x e 2 E e Hl(-r,O) (71)

0(0) - x

and

F 1 EY + BECIX 1

A x Ax + A20(-r) (72)

The operator B : R 2 E is defined by
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[8 I (73)

0 .

The following result is non-trivial. However, the proof can be given

based on the results in Ref. 1 and Refs. 6-10.

THEOREM 4. The operator B is bounded and A generates a C -semigroupo
At

e on the Hilbert space k.

It follows that a state-space model for the Euler-Bernoulli beam with

delayed actuator dynamics is given by

;(t) - Az(t) + Buc (t) (74)

where A and B are defined by (71) - (73). Moreover, for initial data

z 0 - (y0 ,X09, 0) e D(A) and u (.) e L2 (0,T), (74) has a unique mildC

solution

z(t) eAt z0 + ft e A(t) Du (s) ds (75)

that provides a weak solution to the partial-functional differential

equations (19) - (26).

TIMOSHENKO BEAM WITH ACTUATOR DYNAMICS

We proceed as in the case for the Euler-Bernoulli beam. If

A 2 - 0, then set

-r°. ID x R x R . g x R2 (76)

with inner product
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<Z0o0>oT < 0VW + XlX 1 + X2 X2 . (77)

Let D(A0) be defined by

D(AO) (78)
x

and

•AO AT--C (79)
0 A1 l

Likewise, let B0  R 0 be defined by

Bo [ 1(80)
B,

If A2 # 0, then define Z as

_ 0

E - L2 (-rO;R2 ) = ID R2 xL 2 (-rO;R2 ) (81)

with inner product

<ZoZ>T OT <p(s), (s)> ds (82)
<z9T  <-9 )>0T

2-r

where z = (w,x,p) and z = (w,x,p) e , respectively.

As for the Euler-Bernoulli beam we define A on D(A) ;T by

Fw 1 e :NAT)O
D(A) = x e B/ e Hl(-r,O) (83)

¢ 9(0) = x

and
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x Ajx + A20(-r) (84)

The input operator B R ZT is defined by

B = BI (85)

0 .

The following result follows from Theorem 2 and standard estimates from

the theory of delay systems.

THEOREM 5. The operator B is bounded and A generates a C 0 -semigroup

eAt on the Hilbert space Z.

Again it follows that a state space model for the Timoshenko beam with

delayed actuator dynamics is of the form

i(t) = Az(t) + Bu c (t) (86)

where A is defined by (83) - (84) and B is defined by (85).

ISOTROPIC RECTANGULAR PLATE

We assume that the control is applied such that in equation (35)

f(tx,y) - *(x,y) u (t) where O(x,y) is a given distribution belonging

cto 111(Q) and u CMt modulates the applied force.

Let 1) denote the "energy space"

V _ H2 (o) n it'(n) (87)

0

where H2 (n) and H1(l) are the standard Sobolev spaces (see Ref. 16).

Let X - L2 (Q) and define the differential operator K with domain
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D(K) = X by

D(K) = V (88)

and

KO - A (89)

It follows that the plate equation (35) with boundary condition (38)

may be written as the second order equation

utt + K2u - O(x,y) u C(t) (90)

in L2(0). We rewrite this as a first order system by using the "state"

Fu(t ,x)
z(t) = (91)

ut(t,x) •

Let

= x L2(0) (92)

p

and define the inner product

<zz> =D J [Au(xy) Au(xy)] dxdy

+ m f v(x.y) v(x,y) dxdy (93)

where z - (u,v) and z - (uv) e , respectively. As for the beams,

<zz> - 11z0 2 is the mechanical energy at the state z.

Let D(Ap) 2 p be defined by

D(O) V(K2 ) x D(K) (94)

and
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A = (95)
[ -02  0

Also, define Bp : R 4 p by

p 1(xoy) (96)

The following is a direct consequence of standard results found in

Refs. 17, 18 and 19.

THEOREM 6. The operator BP is bounded and A, generates a C o

eAt on the Hilbert space 2p.

As in the case of the beam structures, we have a state-space model for

the plate of the form

;(t) - A pz(t) + B pU(t) (97)

where A and B are now defined by (94) - (96).P P

GENERAL FRAMEWORK

All of the problems formulated above fall into a specific class

of distributed parameter systems of the form

Z(t) - Az(t) + Buc(t) (98)

where A generates a Co-semigroup on an Hilbert space Z and B : R -

is a bounded linear operator. The space 2 is called the state-space

and given an initial state z0 e D(A), we know that

z(t) - eAt z0 + t eA(t-s) Bu c(s) ds (99)
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define (at least) weak solutions of the partial-differential equations

that govern the motion of the particular structure. The particular

model (Euler-Bernoulli beam, Timoshenko beam, Euler-Bernoulli beam

with actuator dynamics and no delays, etc.) determine the space B and

the operators A and B. We summarize these spaces and operators for the

cases presented above.

Euler-Bernoulli: No Actuator Dynamics

2 = g as defined by (41) - (42)

A = AE as defined by (43) - (44)

B = BE as defined by (45)

Timoshenko: No Actuator Dynamics

2 = W as defined by (53) - (54)

A = AT as defined by (55) - (56)

B = BT as defined by (57)

Euler-Bernoulli: Actuator Dynamics, No Delay
0

2 = 2E as defined by (63) - (64)
E

A = A0 as defined by (65) - (66)

B = B0 as defined by (67)

Euler-Bernoulli: Actuator Dynamics with Delays

Z -= as defined by (69) -(70)

A - A as defined by (71) - (72)

B -B as defined by (73)
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Ttmoshenko: Actuator Dynamics, No Delay

4 as defined by (76) - (77)

A - A0 as defined by (78) - (79)

B = B0 as defined by (80)

Timoshenko: Actuator Dynamics with Delays

- E as defined by (81) - (82)

A - A as defined by (83) - (84)

B - B as defined by (85)

Isotropic Rectangular Plate

2 - as defined by (92) - (93)P

A - A as defined by (94) - (95)
p

B = B as defined by (96)
p
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THE CONTROL PROBLEM

The abstract state-space formulation of the various beam and

plate systems provides a convenient framework in which to formulate

and approximate control problems. Recall that in all cases the number

of controls available is finite, indeed for the problems considered

here we have a single control.

As noted previously, the purpose of active control is to increase

the effective damping; that is, to enhance the decay rate of unwanted

vibrations. The decay rate can be understood in terms of the eigenvalues

of the closed-loop system. Over the past thirty years a considerable

literature has developed on the use of linear-quadratic control theory

to design controllers for finite-dimensional system (see, for example,

the excellent book by Kwackernaak & Sivan (Ref. 20)). While this theory

has deficiencies, such as requiring accurate knowledge of the open-

loop dynamics, it is a useful part of a comprehensive control design

strategy. Accordingly, we shall formulate a linear-quadratic control

problem for our (infinite-dimensional) Hilbert-space setting. The

control laws we develop for the beam and plate models are based on

this formulation.

All of the state-space formulations developed in the section above

required a Hilbert space B, a dynamic operator A with D(A) = B and an

input operator B:R - Z. We assume that A generates a C -semigroup0

At
e and B is bounded.

In order to formulate an LQR problem, we introduce an output

operator
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and assume that C is bounded and linear. It may be helpful to think

of C as a mapping that "reads out" physical meaningful quantities at

certain locations on the structures (e.g. velocity or strain measure-

ments). Mathematically, we require that C has the form

Ciz

C2z
C (100)z

C. zn

where each "sensor" Ci. i = 1,2,...,n is a bounded linear functional

from 2 to R1 . Examples will be given below.

One can now describe the control system which is governed by the

state-equation in z

(t) = Az(t) + Bu (t) (101)c

with initial data

z(0) = z0 E D(A) (102)

and output in Rk

y(t) - Cz(t) (103)

It should be noted that "output" is used here in the sense that it is

d variable to be controlled. The control law we construct will

require state feedback and we do not consider the estimation problem.

The optimal control problem on _- is to choose a cc-trol

u e L 2 (0,+-;fl) to minimize the cost functional
c
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J(z ,u) = f (0{y(t)h2 + RI1u (t)112 } dt (104)

where S > 0 is a k x k semi-definite matrix, R > 0 and 11y11 2

S

<Sy,y> is the standard weighted semi-norm. It should be noted that the

cost functional can be generalized to include cross-terms in y and u

Tby formulating a quadratic weight on the composite vector (y,u)

Let Q : 3 3 denote the self-adjoint bounded operator defined

by

C* S C (105)

where C* : R k 2 is the adjoint of C. Note that one can rewrite the

cost function (104) in the equivalent form

J(z°u) = {<Qz(t),z(t)> + <Ru (t),u (t)>} dt (106)
2 0 + c c

and hence the optimal control problem described by (101) - (104) is the

direct generalization of the standard finite dimensional (LQR)-problem.

Much of the theory for the finite-dimensional problem carries over to

this Hilbert space setting. In particular, we shall make use of the

variation of parameters formula

z(t) - eAt z0 + eA(t) BU (s) ds (107)0

for the mild solution of (101) - (102).

A function u e L2 (O,4-; R) is an admissible control for the initial

state z, or simply an admissible control for z, if J(z,u) is finite;

i.e., if the state z(t) corresponding to the control u(t) and the
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initial condition z(O) =z 0 is in L 2(0, ;E).

Let the operators A, B, Q, and R be as defined above. A bounded

linear operator 7, : Z' Z is a solution of the operator Riccati

equation if H maps the domain of A into the domain of A* and satisfies

the Riccati equation

A* + HA - R B-i B* R + =0 (108)

The following result may be found in Ref. 15.

THEOREM 7. There exists a non-negative self-adjoint solution of the

operator Riccati equation (108) if and only if, for each

z e 2, there is an admissible control for the initial state

z. If n is the minimal non-negative self-adjoint solution

of (108), then the unique control u () which minimizes J andc

the corresponding optimal trajectory z(-) are given by

-1u (t) -R B* R z(t) -K z(t) (109)c

and

z(t) = $(t) z (110)

where $(t) is the C 0-semigroup generated by0

[A- BR- I B* a].

The semigroup eAt is called the open-loop semigroup and the semigroup

$(t) is called the optimal closed-loop semigroup.

Note that if the open-loop system is exponentially stable, i.e.

there exists M,, a, > 0 such that

Ile At < M, e  (111)
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then u (t) E 0 is an admissible control for all z e 2. In this case
C

Theorem 7 applies.

In the beam and plate problems formulated in the previous sections,

(111) does not hold. This is due to two factors; there is no damping

in the models and for the beam problems there are rigid body modes. In

order to overcome these problems we introduce damping into the models.

In particular, if equation (35) is replaced by

u tt(tx,y) + y A ut(t,x,y) + D A2 u(t,x,y) = f(t,x,y) (112)

where the damping term Y A u (t,x,y) is added, y > 0, then the basict

state-space p =3 x L2(Q) is unchanged. However, the operator (no

damping) Ap given by (95) does change and for this case (112) leads to

a new state operator

A 0 (113)Ap - K2  (lY

with the same domain D(Ap) = D(A p). Moreover, eApt will satisfy a

decay rate of the form (111). A similar (but slightly more complex)

thing occurs if the damping term Y A u t(t,x,y) is replaced by the so-

called Kelvin-Voigt damping term Y A2 u t(t,x,y).

In the beam problems we added a viscous damping term to the beam

models. As in the example above, the state-space 2 does not change but

the state operator becomes modified much like Ap is changed to AP,

However, one still does not obtain an estimate of the form (111)

because of rigid body modes. It happens that even though these modes

do not have exponential decay rates, they are stabilizable. Thus, the

basic Theorem 7 can be used to show that for each z e 2 the LQR problem
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for all of the structures considered here has a unique optimal solution

given by (109) where U solves (108), provided that we add damping to

the structural elements.

Another feature that is apparent from the Riccati equation (108)

is that the adjoint operator A* plays an essential role in the determi-

nation of n. For the structural control problems, the operator A is a

differential operator and for the case where there is no damping and no

delays in the actuator, then A - - A*. However, as indicated above it

is essential to include damping and hence for all the damped systems it

follows that A # - A*.

The key point is that if one wishes to use approximations of the

state operator A to solve the Riccati equation (108), then these ap-

proximations must also provide good estimates of A*. This is

particularly important when delays are included in the model (or if other

types of damping models are used, see Refs. 2, 13 and 21). This turns

out to be a crucial point that is often overlooked in finite element

and modal control approaches to these problems.

CONSTRUCTION OF THE OUTPUT OPERATOR

We indicate the form of the output operator for the beam and

plate control systems. We provide details for the Euler-Bernoulli beam

problems and indicate the necessary changes for the Timoshenko models.

Recall the problem with no actuator dynamics. For the Euler-

Bernoulli beam the state is given by (40), i.e.

36



z1 (t) 6(t)

Z2 (t) w(t)

z3 (t) n(t) + Lw(t)
z(t) - (114)

Z4(t) (t) + W(t)

z5(t) ux (t,x)

z 6 (t) u t(t,x) + xW(t)

Consider the problem where we measure e(t), w(t), n(t) + Lw(t),

g(t) + w(t), the average strain in neighborhoods of selected points

0 < < ... < L along the beam and the average velocity in

neighborhoods of selected points 0 < x1 < x2 
< ... < x < L along the

beam.

We proceed now to give the precise mathematical definitions

needed to describe the above output operator. Let e > 0 and

x e [0,L] be a fixed point along the beam. We consider the cases

i) x -0, 1i) x - L, and iii) 0 < x < L. If x - 0, let a(x) M(0)

denote the bounded linear functional defined from L2 (O,L) to R by

e 1 fe

[36(x)] (M(] = (0 j e(s) ds (115)

1e() e

If x - L, let Me(x) - Me(L) denote the bounded linear functional

defined by

[me(x)] 0(_) _ [Me(L)1 0 (0) fL 0(s) ds (U16)

eL- 6

If 0 < x < L we pick e > 0 such that 0 < x - e < x < x + e < L and

let e(x) denote the bounded linear functional defined by
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fx+p-O w s ds (117)
x-e

if Me (x) is defined by (115) - (117) then the mean strain in the

e-neighborhood of a point x. with 0 < xi - e < x < x. + e < L is1 1 1

given by

[IR(xi)] U xx(t) = U f xx(t,s) ds (118)

Let e > 0, 0 < x1 < x') < ... < x < L and 0 < Xi < £ <..

p
1 < L be such that 0 < x - e < x1  x + e < L, i 1,2,...,p and<q 

1 
b 

i
0 <x e< x x.+ e< L, i 1,2, ..,q. Let C : R andi£ 1 1 x 5,i

C : 2- R q be defined by
C

,e(xi)I z5(.)

[e,-2)] z5(.)

C z (119)
S

[me(;] z5(.)

and
[ (x)1 Z6(.)

[Im' (x2)] z6()
C z (120)

v L
me)(x q) z() z,

respectively. We now define the output operator CE Z Rk where

k 4 + p + q by
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Z.
i

z2

z3

C EZ= (121)

In summary then, for the Euler-Bernoulli beam without actuator

dynamics, the output

y(t) = CE z(t)

has its first four components given by y1 (t) = 6(t), y 2 (t) w(t),

Y 3 (t) = [ut (t,L) + Lw(t)] and y4(t) = [Uxt(t,L) + w(t)]. The next p

components are mean strains y1 (t) = [M (xi)] uxx(t,-), i =

and the last of components are the mean velocities yi(t) =

[[u(Xi)] [ut(t,')] + xi w(t). We can add weights to the output by

selecting the k x k matrix SE to be a diagonal matrix of the form

SE  = dia (c , c , ..., c) (122)
E k

where ci , i = 1,2,...,k are real constants.

The introduction of the delayed actuator dynamics for the Euler-

Bernoulli beam problem leads to additional states for the actuator

x(t) - col (xl(t), x 2 (t)) and (in case A 2 0 0) the history function

x(.) - col (xl(.), x 2 (.)) 6 L 2 (-r,O; R2). To account for these

features we augment the output operator E defined by (121) and the

weighting matrix defined by (122) to include the two actuator states
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xl(t) and x2 (t). We did not "sense" the history states (although this

is clearly possible).

The Timoshenko beam model is treated in a completely analogous

fashion. The output operator for the plate problem is also constructed

to read out the mean velocities at selected points (xiyi) e a,

i - 1,2,...,q and mean values for the Laplacian [u xx(t,xy) +

U yy(t,x,y)] at selected points (;i,i) e 9, i - 1,2,...,p. The output

... operator C : - I+q is again a bounded linear map.
p p

FORM OF THE GAIN OPERATOR K

As noted above the optimal control is of the form

U (tM - - R-  B* n i -t) K i(t)
c

where K : 2 1 R is the optimal gain operator. The particular form of

K depends only on the choice of the state-space 2 and the corresponding

inner product < , >. In each of the applications above, the state-

space has a specific Hilbert space structure and the Riesz Representa-

tion Theorem (see Ref. 22) can be applied to yield a specific form for

the optimal feedback gain operator. We present these representations

for the basic problems.

Euler-Bernoulli: No Actuator Dynamics

KE ZE(t) - k, 6(t) + k2w(t)

+ k3 [ut (t,L) + Lw(t)]

+ k4 [u (t,L) + w(t)(.:,. ), ::.... xt(123)

+ k5 (x) [U xx(tx)} dx

0

";:'' .- r k (x) [ut(t,x) + xI (t)] dx
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where k 5 (.) e L 2 (0,L) and k 6 (-) eL 2 (0,L) are the functional gains for

strain and velocity, respectively.

•Timoshenko: No Actuator Dynamics

',r zT(t) = k1 8(t) + k2 w(t)

+ k 3 ut (t,L) + Lw(t)]

+ k 4 [ Jt (t,L) + w(t)]

L
+ k 5(x) ut (t,x) + xw(t)]dx (124)

L

+ k6(x) (,t(tx) + w(t)ldx
0

+ k7 (x) [*x(t,x)]dx

+ jL k8 (x) [ux(t,x) - 4(tx)]dx

Euler-Bernoulli: Actuator Dynamics, No Delay

Here z - zO - col (ZEs x1 , x2) where zR is defined by (40) and

KE z0(t) - KE ZE(t) + k7xl(t) + k~x 2(t) . (125)

Euler-Bernoulli: Actuator Dynamics with Delays

Here z - col (zR . (ZER x1 , x 2 , 0i(*), *2(*)) T and

fo
K z(t) - KRO zO(t) + kg(s) *i(s) ds + kjo(s) 02(s) ds. (126)

-r -r

Timoshenko: Actuator Dnamics, No Delay

Here z - z0 - col ( ,, x2) where zT is defined by (75) and
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KT0 zo(t) - KT zT(t) + k9 x1 (t) + k 0 x2 (t) (127)

Timoshenko: Actuator Dynamics with Delays

Here z - col (zO, x, x2 , T(), *2(*)) andT' To X1 (z2T.1(* 0(

0 0
KTD z(t) - KT0 zO(t) + f kll(s) ol(S) do + f k12 (s) *2(s) ds. (128)

-r -r

Isotropic Rectangular Plate

K Zp(t) z kl(xy) Au(t,xy) dxdy
p p

+ f k2 (x,y) ut(t~x9y) dxdy (129)

where kl(xy) - A k (xy) with kil(*,) e 0 and k2 (',-) e L2(Q).

Equations (123) - (129) indicate the basic computation problem

is to find numerical schemes for approximating the various gains and

functional gains that appear in the representations (123) - (129).

This is the objective of the computational algorithms described in the

next section.
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NUMERICAL PROCEDURES

In order to develop numerical schemes for solving the LQR problem

defined by (101) - (104) one must introduce approximations and analyze

the convergence. In this section we review the basic ideas behind the

approximation methods and scate a general convergence result due to

Gibson (Ref. 14).

In order to obtain approximate solutions to the Riccati operator

equation (108), it is necessary to approximate the operators A, A*, B,

B* and Q. Since Q = C* S C, this implies that one must also approximate

C and C*. For the problems considered here, the most difficult aspect

of this problem is the development of convergent approximation schemes

for A and A*. More to the point, we need approximations of the

semigroups e and e .

An approximating sequence for the control problem defined by

equations (101) - (104) is a sequence of finite dimensional subspaces

c Z, projections Z1 Z - P, and linear operators

f (130)

satisfying

II II I , N 1,2,...,

F z+z for all ze, }(131)
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N
B u ).Su, for all u e R

(132)

Q~Pz= [C 1* S CPz-~ Qz , for all z e }*(12
XNThesemgrops At [ANIt

The semigroups e , e must have the property

.tN At
e t ]p z e z

(133)

N*
[A t pN A t

for all z e Z, uniformly for t in compact intervals (see Ref. 14). The

construction of approximating sequences for the control problem (101) -

(104) is a problem in numerical analysis and approximation theory. The

basic idea is to approximate the (differential) operator by a finite-

dimensional operator AN (i.e. using finite elements, finite differences,

modal truncation, etc.) and then showing that AN converging to A

implies (133). This is a nontrivial problem in functional analysis. In

fact, the basic question (when does AN PN z-. Az imply (133)) is not yet

fully understood. A partial answer to the convergence question is

provided by the now famous Trotter-Kato Theorem (see Ref. 23). Although

there are a number of extensions of this theorem (see Theorem 3.1 in

Ref. 6), we state a simple version that is sufficient for the problems

considered here.

THEOREM 8 (TROTTER-KATO THEOREM). Let A be the generator of a strongly

continuous semigroup eAt satisfying lieAt 11 Me t Assume that AN is

a sequence of operators generating strongly continuous semigroups
N

eA t satisfying

i) Ile ANt <Me N 1,2 ....
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ii) ANz - Az for ze D, D dense in z

iii) There exists X0 with Re(X 0 ) > 3 such that (A - A01)D is
Nt At

dense in Z. Then e Z z- e z for all z e Z and the convergence is

uniform for t e [0,T].

In terms of numerical analysis, condition i) is the stability require-

ment and condition ii) is the consistency requirement. Thus convergence

of the approximation scheme is dependent upon having a consistent and

stable numerical scheme that also satisfies the technical condition iii).

Any numerical scheme that does not satisfy conditions i) - iii) may

not produce an approximating sequence for the control problem (101) -

(104). Moreover, even if the approximating sequence is such that i) -

iii) are satisfied, there is no assurance that the dual semigroups will
[ANI* pN At*

converge strongly, i.e. that ez - e

The following convergence results were first established by

Gibson (Refs. 12-14). We assume that we have an approximating sequence

N = (2N, P N, A N, B N, CN) that satisfies (130) - (133) and consider the

approximating Riccati equation

[AN]* RN + 1N AN - R BN R- I [BN]* 7 + QN = 0 . (134)

The basic issue is the convergence of RN to H.

THEOREM 9. Suppose that ZN satisfies (130) - (133) and for each N

there is a non-negative self-adjoint operator RN that solves (134). If

there exist constants M, M > 0, a > 0 (independent of N) such that the

closed-loop semigroup

N N_ BN RN1 N]
$(t) - exp ([A B [BN]* t) (135)
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satisfies

ll N(t)l < Me - 
, t > 0 , (136)

and

u1N 1 < (137)

then the operator Riccati equation (108) has a non-negative self-adjoint

solution R and for each z e 2

N NPN P z 11 z (138)

and

N
(t)z -)- 5(t)z (139)

uniformly in t > 0.

The approximating gain operators are given by

N= R-. (BN], N . (140)

The crucial issue is the convergence of N to the optimal gain operators

K defined by (109). Since our structural control problems have a

finite number of controls (i.e. one input), the following result

applies to our problems.

THEOREM 10. Assume all of the conditions in Theorem 9 hold. If the

number of inputs is finite, then

ile i, - K11 -' 0 (141)

as N -.

A proof of this result may be found in Ref. 13 and in the pre-

print Ref. 14. In order to use this result one must show that the

approximation scheme one proposes to use to solve the control satisfies

(130) - (133) and (136) - (137). Usually it is not difficult to
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establish (131) and (132) and most of the effort in terms of numerical

analysis comes from verifying conditions (133), (136) and (137).

The Trotter-Kato Theorem is the basic tool needed to establish

(133). The work required to establish (136) and (137) is essentially

the same as showing the approximating systems are all uniformly (with

respect to N) stabilizable (see Ref. 13, Ref. 14 and Ref. 24). This

can be difficult. However, for damped structures and many of the

"standard schemes," (136) - (137) can often be shown to hold. We

turn now to a brief description of the approximation schemes for the

various applications.

While the approximation theory we employ is rooted in the state-

space formulation, it is important to employ 'physical' insights when

constructing specific approximation schemes. When considering the

Euler-Bernoulli beam model, for example, it is helpful to keep in mind

that the "infinite" dimensional aspect of the state-space is engendered

by the fifth and sixth components of the state-vector and that these

are each related to the beam deflection [i.e. z 5 -ux, while z 6  u t.

Thus, if one thinks of approximating the deflection by a suitable

combination of shape function

u(t,x) - E ci(t) hi(x)

then the basis functions used to approximate z5 would be the h", while

those used to approximate z would be hi. In addition, the basis

functions should satisfy the essential boundary conditions.
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EULER-BERNOULLI BEAM APPROXIMATION SCHEME

We consider a uniform grid with N 'panels' on the interval [0,L].

To represent deflections of the beam we employ cubic B-slines, which

form an (N + 3)-parameter family of C1 functions (see Refs. 25 and 26).

The elements of this family are denoted by B W, .i.

We shall abuse notations and suppress the dependence on the mesh

parameter N. The domain of the {B i} is the interval [O,L]. Each of the

Bi can be constructed by stretching and shifting the argument of a

fundamental cubic-spline, B : [R] - R. The fundamental spline is

supported on the interval [-2,2] (i.e. it's identically zero outside

this interval). A graph of the fundamental spline is shown in Figure

3. To construct an element B i(.) one employs the rule

Bi (x) = B(N - (x/L) - i) . (142)

The essential boundary conditions for the deflections of the

Euler-Bernoulli beam require that the shape functions and their first

derivatives should vanish at the root (x - 0). Thus, we are led to use

combinations of the B-splines that satisfy these two conditions. This

leads to the (N + 1) parameter family of shape functions

h l (x) E B0 (x) - 2 [Bl(x) + Bl(x)] (143)

hi(x) B i(x) , i = 2,...,N+l (144)

The shape functions are used to construct basis vectors in the

state-space 2(- U) as defined by (41) - (42). To represent the "beam-

velocity" we use the vectors

ei a [0, 0, hi(L), hi(L). 0. hi(-))T (145)

(i - l,2,...,N+l).
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Figure 3. Fundamental Spline
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Note that each ei has been constructed to satisfy the tip end-conditions.

The 'beam-stress' will be presented by the vectors

eN+l+i (0, 0, 0, 0, hi"(-). 01 (146)

(i - 1,2,...,N+1).

In addition to the beam deflections one must, of course, also

include the hub motions in the finite-dimensional model. For the hub

velocity [w(t)] we employ the element

eO - [0, 1, L, 1, 0, x]T (147)

while for the hub position the element is

e_l M [1, 0, 0, 0, 0, 0]T . (148)

The subspace P is generated as the span of the set {e i} and has

dimensions (2N + 4), i.e.

- span {ei/i - -l,0,...,2N+2} (149)

where the ei are defined by (142) - (148).

Following the general procedure outlined above leads to the

Galerkin approximation for the system (101) - (103) restricted to the

subspace P. The form of this model is

GN aN (t) _t) +EN u(t) (150)
E N E

y NtW - CE C (t (151)

The components of aN (i.e. a-i, CO, ..., a2N+2) are the co-ordinates

for the representation of the state in terms of our basis for

That is,
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N 2N+2 N
(t) (t)e, (152)

i--i1

The matrix G is in the form
E

1 0 0 0
0

0 f 0 f, . ....... fN+l
- - - ---- - - - - - - - - -

0 fl

NIG -  G 1 0 (153)

f I
N+l I
-I----------------

L 0 1 0I

where the scalars f. (i = 0,1,...,N+I) are defined by
1

f0 - 1/3 + [IA + mc L 2 + I c/pL3

f, M [mChi (L) L + IChi(L)]pL3

and the (N+l) x (N+I) symmetric matrix G1 is given by

G, = [m h (L)h (L) + I hI(L)h (L)

+ p 0 hi(x) h.(x) dx]/pL3

I is the identity matrix of order (N+1) and
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0 1 I
1 0 I 0

0 0 I

0,I I(154)0 1 0 1 - a G2
I I
I I

0 I 1 0

where a- (EI/PL 4) is a frequency parameter and

rL
G2(i,j) - L h"'(x) h'(x) dx

EN is a (2N+4) component column matrix with all zeroes except forE

(11pL3) in the second entry.

Referring to equation (121) it is seen that the CN matrix has

(4 + p + q) rows and (2N+4) columns. This is most easily described by

considering the individual rows (or blocks of them). The first output

is the angular position e and the corresponding row is given by

N
C(l,-) - [1,0,0,0] , (155)

where the block 0 is an (N+l) vector. The second row (angular velocity

w) is given by

Cz(2,.) - [0,1,0,0] . (156)

The third output is the tip-mass velocity and its row in CN is
EN N

CE(3,.-) - [0,LhN N (L) ,01 (157)

The fourth output is the angular velocity of the tip-mass and is given

by

C N (4,.-) - (0,l,h'(L),...,h+(L),o]  (158)
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The next block of p outputs correspond to measurement of the beam strain

at specified points (xi) on the beam. A typical row in this block is

CE (4 + i,.) - [0,0,0, Ut (xi)h"(.)

(xi)h+ (159)

where i (xj) is the approximation to the delta function (see equation

(117). The final block of q outputs describe measurement of the total

beam velocity at specified points (x i) on the beam. A typical row in

this block is

C E(4 + p + 1, .) - [0, me(x ) hl('),

.. (xi) hN+1('), 0] . (160)

TIMOSHENKO BEAM APPROXIMATION SCHEME

For the Timoshenko beam the state-space ) ( -1 R x R x R x R

x L2 x L2 x L2 x L2 (see (53), (54)). The fifth co-ordinate is related

to the beam's transverse velocity [u t while the sixth is related to

the angular velocity [qt I. The seventh co-ordinate is the curvature

x and the eighth is the shear deformation [ux - i]. If one thinks

of approximating the functions u and ' then it is 'natural' to combine

the (N+3) cubic B-slines to enforce the essential boundary conditions

on u and u t(t,O) - *t (t,O) - 0]. This leads to the (N+2) parameter

family of shape functions that vanish at the left end:

qo(x) - B0 (x) - 4 B_l(x) (161)

qj(x) - 4 * Bl(x) - Bo(x) (162)

qi(x) - Bi(x) i - 2,3....,N+l (163)
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The basis vectors for the lineal velocity are

ei = [0, 0, qi(L), 0, qi(.), 0, 0, 0 lT (164)

i - O,,...,N+I. Similarly the basis elements for the rotational

velocity are

en+2+ t - [0, 0, 0, qi(L). 0, q 0, O]. . (165)

i - 0,1,...,N+l. To represent the distribution the basis elements

are

e2N+4+i - [0, 0, 0, 0, 0. , q ( ), -q ,i( )] (166)

while the basis elements for the u distribution isx

- [0, 0, 0, 0, 0, 0, 0, qj(.)] (167)

As in the Euler-Bernoulli case, the hub motions require the elements

e_l [l 0 0 0 0 00 0 1T (168)

and

T
e0 - [0 1 L 1 x 1 00] T . (169)

The subspace generated by the £ei} defined by (161) - (164) is again

denoted by

N - span {ei / i - -i,0,...,4N+4} (170)

and is [4N+61 dimensional.

Again one applies the general theory for approximating the system

to produce a model of the form

N N N
Cj x (t) -HIli (t) + E. u(t) (171)

y N(t) - CT x (t) (172)
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In this case the square matrices GT and are of order (4N+6) and

EN is a compatible column matrix. The matrix CTN has (4N+6) columns andET T

(4+p+q) rows.

EULER-BERNOULLI WITH ACTUATOR DYNAMICS: NO DELAY

In this case the state space 2 (- 0) is the 'Euler-Bernoulli'

state-space g augmented with the two additional actuator states [see

(63) - (64)]. Because of the cascade structure of the system (62) it

is relatively simple to extend the approximations used for the Euler-

Bernoulli beam with no actuator (i.e. (143) - (144)) to produce the

approximation for 4 0 . Specifically, each of the (2N+4) basis vectors

defined by (145) - (148) can be injected into by augmenting two

zeroes in the places for the actuator states. The additional basis

vectors needed to cover the actuator states are taken as

e2N+5 ' (0, 1, 0) (173)

and

"2N+6 - (0,0 , 1) , (174)

where 0 is the zero vector in I(defined by (41) - (42)).

With these basis vectors in hand it is clear that the subspace

4E is (2N+6) dimensional and the standard procedure is used to generate

the matrices needed to represent the approximating system. In fact the

cascade structure of the system leads to a simple block structure for

the matrices. More is said about this feature in the next section.

EULER-BERNOULLI WITH DELAYED ACTUATOR STATES

The inclusion of delays in the dynamical model for the actuator

leads to some complication in the approximation procedures. Because
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the actuator is linked to the Euler beam in "cascade" fashion the

state-space Z. has the product structure described above (see (69)).

Z E _ V x 2 x L 2 (-r,O; 2 ) .

Moreover, the dynamics of the coupled system has the cascade structure

(t - A Ey(t) + BE C' x(t) (175)

i(t) = A1 x(t) + A2 x(t-r) + B1 u C(t) (176)

We develop the approximation for this system in two stages.

Firstly, using the scheme discussed above, one approximates the operator

k and hence the Euler-Bernoulli dynamics. This leads to the system

(150) which can be put in normal form by (effectively) inverting the
N n

Gram matrix 0. Define the matrices A and FE as

AN N 1N (177)

N N-1 NFz E 1  E C1. (178)

This approximate Euler-Bernoulli model when coupled with the delayed

actuator can be written as the delay differential system

ON tzN(t) + (tr)
zMW+z (t) = z

0 A, A2

+ 0 u c (t) (179)

N
Here z has dimension (2N+6).
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The system (179) is still "infinite dimensional" because of the

history term z N(t-r). There are many numerical schemes for constructing

approximations for such delay-differential systems [Refs. 6-8, 13].

The averaging scheme [see Ref. 6] uses piecewise constant functions with

a uniform grid (say M sub-intervals) on the interval [-r,0]. This

leads to an (approximating) system of ordinary differential equations.

N,M NM NM NM
v (t) (t) + BEP u c(t) (180)

where vN 'M is a vector of dimension (M+l)(2N+6). The matrix A,M is

given by

N N 0 . . 0 0
FE

0 AI 0 . . . 0 2

M M_-I _-_I

NM r r

0 0
r r

(181)

where again I is the identity of order (2N+6). The control matrix

(M+I) (2N+6) x 1 is
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0

B1

No° 0 (182)

while the output matrix is

01 (183)

where I is the (2x2) identity and a is a scalar. Clearly CNM has

(6+p+q] rows; the last two rows read out the actuator 'states' x1 (t)

and x2 (t).

There are several important observations that can be made about

the system (180) with dynamical matrix Aj (181). First, the AN,M
7hE

has a block structure that is independent of the details in the delay

differential equation (179). Specifically, the matrix operating on
N N ,Mwhlte
z (t) (see (181)) appears in the upper left block of AE  while the

matrix operating on the delayed 'state' z N(t-r) is in the upper right

block. The main diagonal below the (1,1) block has (-M/r) • I in

each block, while the subdiagonal has blocks with (M/r) • I.

The (1,1) block, itself has some structure with the Euler approxi-

mation [A] in the upper left and the (2x2) actuator matrix A1 in the

FN N Nlower right. The term E in the upper right depends on C0 and H0

from the Euler approximation (see (178)] and on the actuator state-to-

torque matrix C1 [see (61)].
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The matrix in the upper right block of ANM has the (delayed)
E

actuator matrix A2 as its only non-zero entry. Similarly the control

matrix BN,M has the (1x2) actuator control matrix B1 in its only non-

E

zero block.

The output matrix C has zero blocks corresponding to the
E

'history' 'states'. That is, the output depends on the first (2N+6)

element 'block' in the (M+I)(2N+6) vector 
vN M

In the task of assembling the matrices A , B,M and C one
E E E

thinks of the matrices CE, N, FE and E as "data" (describing approxi-

mate Euler beam dynamics). Similarly, the matrices Al, A2, BI and C1 ,

and the scalar r, are "data" for the actuator. This view is also

exploited when the Timoshenko beam is coupled to the actuator.

Finally, since only the last two components of the (2N+6) vector

N
z (t-r) are really needed, it is clear that considerable saving is

possible. In particular one can compress vN , to length (2N+6) + 2M

without affecting the input-output behavior of the approximating system

[see Ref. 10]. Indeed, if A 2 has rank "i" (z e [0,1,2]), then vN ,M

can be compressed to length (2N+6) + RM. Of course, with Z - 0 the A--

matrix is null and the system is identical to the non-delayed actuator

case.

TIMOSHENKO BEAM WITH ACTUATOR DYNAMICS

In view of the discussion of the structure of the delayed actuator

model for the Euler-Bernoulli beam, it is possible to describe the case

for a Timoehsnko beam (with and without delays) very simply.
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The matrices for this case are of the same form as A except

that the blocks N~, FN and Nare replaced by the corresponding blocks

from the Timoshenko model. Specifically

N N(15

FiGN -l N (186)

T [Gi j C

and

0 0_ N M CT 17
T { :I (187)

The dimension of the system is (4N+8) + 91 where, as before, Z is the

rank of A2.

ISOTROPIC RECTANGULAR PLATE

The state space model for this system is given by equations (91) -

(96). In particular, if u(t,x,y) is the transverse deflection of a

point on the plate then our state is identified with

z(t) a (188)
1u t(t~x~y) I.

The (clamped) boundary conditions require that u vanishes on the

boundary of the rectangular domain and also that the Laplacian

(u + u yy) vanish there.

Again one thinks of expressing the deflection in terms of shape

functions, say O(x,y). Because the geometry of the boundary is

rectangular, it is convenient to express each shape function as a

product of one-space variable functions. Specifically, we write
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u(t,x,y) = ci 1 (t) qi(x) q (y) . (189)
i,j

The boundary conditions require that each q and its second derivative

vanish at the edges. To construct a suitable set of q. we again use

the cubic B-splines which form an (N+3) parameter family, where N is

the grid parameter. Since there are four boundary conditions, it is

reasonable that we end up with an (N-i) parameter family of qi.

Specifically, we have

qj(x) = Bl(x) - Bl(x) (190)

qi(x) = Bi(x) i = 2,...,N-2 (191)

qN~l(X) B+l(X) - Bl(X) . (192)

The spatial variables x and y are, of course, independent. Thus, when

constructing the Bi for the x variable the scale length is L and the
x

grid parameter is N [see equation (142)].X

For the purposes of displaying the basis vectors it is preferable

to enumerate the approximating functions by a single index (say k)

rather than a double index (i and j). Hence we define

Pk(xy) - qi(x) qj (y) (193)

where k E (j-l) • (Nx - 1) + i and i e [l,2,...,N x-1] and

J e [l,2,...,N y-1]. There are 4 3 (Nx-l)(Ny-l) independent functions

and each satisfies the boundary conditions.

The basis vectors used to generate N are the "displacement"

elements
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ei = [Pi 0] (194)

i M 1,2,...,M

and the "velocity" elements

eM+i [0 Pl (195)

i = 1,2,...,M. Hence the subspace N spanned by ei defined by (190) -

(195) has 2(Nx - 1)(N Y-1) elements.

With the basis chosen the matrices needed to represent the

dynamics on the subspace P can be constructed by the standard Calerkin

procedure. Specifically, one substitutes the approximate form

N 2M
z (t) I a ck(t) ek (196)

k-i

into the system

z p(t) - Ap z pt) + a ut) . (197)

The coefficients are then found from the normal equations (see Refs.

25, 26) as

M.M MM M
C p a (t)= Hpa Mt+Ep u(t) (198)

where GM is the 2M-square (symmetric) Gram matrix
P

GM(i,j) <ei , e> , (199)

and

, <A ei, e > (200)

and

E M(j) <B e > . (201)
p p
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The inner product is given by the equation (93).

The output map CM is found by substituting the approximate
p

form (196) into the output equation (103). CM has p + q rows and
p

2M columns. The kth column is given by

CM[k] = C e (202)
p pk
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JOINT MODELING

A large space station is generally constructed with various

structural members joined together to yield the desired configuration.

The points at which these members are joined are called the structural

joints and may vary widely in type and configuration. The types of

joints of interest here fall into two categories: those whose

characteristics are related to friction properties or friction joints,

and those whose characteristics are related to the properties of the

materials which compose the joint or integral joints. Friction joints

are typically formed by two friction surfaces in contact under the

action of a constant clamping force such as two beams joined with a

bolt or a rivet. Integral joints are formed by some bonding procedure

such as welding or by shaping the connecting portions such as

inserting a rod in a hole or some similar arrangement. Clearly some

joints (probably most) have characteristics associated with both types.

The purpose of this section is to examine various models which can be

used to describe the properties of the joints with various levels of

fidelity.

The purpose of a joint is to maintain the geometric integrity of

the structure and at the same time transmit the loads from one member

to another. Typically a fastener is used to keep the lineal dimensions

of the structure intact while friction is used to keep the rotational

relation of the structural members intact. A typical example of this

type of joint would be a nut, bolt and washer connecting two slender
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beams. If the bolt were loose, the joint would approximate a pure

pinned joint, while if tight it would approximate a rigid joint.

Unfortunately neither of these two extremes are realizable and we must

settle for something in between.

A considerable amount of experimental work has been carried out

with the object of determining the properties of these joints,

particularly for the case of structures which are vibrating. Of general

interest is the damping effect on the motion while on the other hand

particular interest is paid to the mathematical model of the joint

which will predict the detailed force-displacement-time relationships

and also allow one to predict the contribution to damping.

The bulk of investigations pertain to friction type joints.

Beards and Woowet [Ref. 27] present experimental results indicating that

the amount of structural damping can be improved by proper selection of

the clamping force in friction type joints. They observed that a low

value of this force (maybe too low for practical application, i.e. the

structure loses some of its integrity) leads to the optimum damping.

They ou not concern themselves with a mathematical model of the joint.

An effort to validate an early model of a friction joint was made

by Richardson and Nolle [Ref. 281. Their work tests the Panovko [Ref.

29] model as refined by Metherell and Diller [Ref. 301. Here a normal

force P acts on the cylindrical friction joint consisting of two

cylindrical members with a friction interface. An application of an

external moment causes friction shear stresses to be formed at the

interface and a microscopic slip displacement takes place between the
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two members. This slip may take place over all or part of the inter-

face but gross sliding between the two members is excluded in the model.

The assumptions are that the interfacial slip occurs for all values of

the load and begins at the outer edge of the contact circle and, as

the load is increased, the slipped region extends radially inward as

needed to provide the required load. The slipped region is a circular

annulus. The loading cycle is considered in three parts: initial

loading for a previously unloaded joint where the moment goes from 0

to M max , unloading of the joint where the moment goes from Mmax to

Mmin, and finally reloading of the joint where the moment increases to

M again.max

For the initial loading the inner bound of the radius of the

slipped region is determined from moment equilibrium:

M = 2ffr 2 P P dr (203)
a

where a = inner radius

R - radius of friction joint

r = radius to generic point

p = coefficient of static friction

P = normal force (clamping force)

Hence

a 3 = R 3 - 3M/2r v P (204)

When M, the moment becomes large enough, a 0 and gross sliding

occurs. A relation between the moment and the joint displacement is
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given by (see Ref. 28)

= + (205)

Here a is dependent on the moment as in equation (204) and

GS 1GI ' 2G 2

where are the thicknesses of each part of the cylindrical joint

between body 1 and body 2, GIG 2 are the shear modulus of body 1 and

body and are properties of the material adjacent to the friction

interface.

During unloading the joint displacement is shown to be

pP [ax fainaxj 3+ b (b (206)

where a m a when M = M < M slipping and b is determined frommax max gross

max - (2P) 2r dr 4 IP (R3 - b 3 ) (207)

where M is the value of the moment during the unloading with the lower

bound of M..

Subsequent reloading to Mm again provides the following jointmax

displacement

!elb 3pPR [2r (amax] + 'amaxY + 6bmax 2 . max ]
~r. CSLR j IR I.RJ

- +2 [-] 1 (208)

where C is determined from
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M -M m P (R3 - C3) (209)

The moment-displacement chdracteristics dre given in general by

equations (206) and (208) as the moment i.- cycled between M andmax

Mmin with equation (205) applying only for the first quarter cycle.

Since the equations depend upon the fact that the load is increasing or

decreasing, the complete cycle forms a hysteresis loop with the energy

dissipation given by

f ax

AE= fMmin (u- ) dM

_ 23 2p2R Fl - 2 + 2 - (210)
3 L

bm

where Lm is determined from

M -M . 4T PR3  1 - . (211)
max min 3 R L-'

One of the chief objections to the above model is the apparent

difficulty in obtaining the value of w for the static coefficient of

the joint. Recall that this is not the value that occurs for gross

sliding but that associated with a microscopic slip displacement.

The friction joint discussed in the above problem has a friction

interface between two bodies with each body having some thickness and

a torsional shear modulus of G. The load is applied to the faces of

the joint away from the friction interface. If the thickness of these

two bodies approaches zero, then the restriction of no gross sliding

becomes more difficult to satisfy. In the limit the only motion
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between the two bodies would be sliding. The friction force which

opposes this relative motion is what is normally called coulomb

friction. The model for this type of motion is

F = K (212)
- if - < 0

where x and j are the velocities of the two adjacent surfaces. If the

motion is cyclic, the force-displacement curves form a hysteresis loop

and the energy loss per cycle can be determined. Analysis along these

lines is presented in Refs. 31 and 32.

The key feature in reference 31 that pertains to this work was

the observation that under the assumption of coulomb friction several

types of motion within the joint can occur depending upon the proper-

ties of the joint, e.g. the value of K which is related to the clamping

force, and the inertial properties of the driven member. If K is low

and the inertia high, then it is likely that there is always relative

motion between the two surfaces and equation (212) always holds. On

the other hand if K is large and the inertia low, there will never be

slip and the joint can be treated as rigid. Of course, it is the

interesting case which falls between these two where there can be slip

followed by a non-slip condition or vice-versa which is most likely to

occur. Reference 31 examines all three possibilities for the case

where the input displacement is sinusoidal. Results are presented 4n

the form of phase plane diagrams for a joint with angular motion.

Expressions for energy loss per cycle are given noting that the first

case of pure slip gives the maximum value of loss and that the value

70



of K which is best in terms of energy loss is given by

K - F2 Aw'/ (213)

where A the amplitude of the motion (angular), w = the frequency.

The maximum energy loss per cycle using the K in equation (213) was

found to be

E = 41A2W2  (214)
iT

where I is the moment of inertia of the damper or unit driven by the

friction.

All the previous investigations examined coulomb type friction

of some interface between two joint members. In addition the more

sophisticated analyses included consideration of the material properties

on each side of the interface. In all cases all motion and structural

deflections are assumed to be in the same plane. In References 33

and 34 the interaction of out-of-plane deflection and the in-plane

motion are considered. In particular slipping at the interface occurs

in the zones where the pressure (related to the flexural vibrations)

is the lowest. Using these ideas these authors were able to arrive at

an equivalent viscous damping ratio for the out-of-plane vibrational

modes. A similar result was obtained in a different manner in Ref.

35. Here a simpler model was used for the normal force variation. It

was assumed the normal force was proportional to a normal displacement

with a constant K1 . This normal displacement is modeled as proportional

to the in-plane displacement x, e.g. y - cx. The joint friction force

in the in-plane direction is then assumed to have the following form:
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F - , clxi sign (1) (215)

Earlier references which support these ideas are given in

references 36 through 40.

All the previous works emphasize the slipping of the interface

between the two joint members. If such slipping does not occur, as in

the case where the normal force is extremely large and the inertial

loads are small, or if the joints are fitted or welded together,

then the joint properties become similar to that of the material

and can be modeled in several different ways.

The simplest model is a pure elastic joint which can be modelled

as a spring and has no losses. Hence the force (or moment) trans-

mitted through the joint is proportional to the deflection, F - kx.

An equally simple model is the viscous joint where the force is pro-

portional to the deflection rate, and not related to the deflection.

In some cases slipping joints can be approximated by this assumption.

The force transmitted through the joint is given by F - cx.

Two additional joint models build on these two by considering

the elements to be in parallel (Voigt model) or in series (Maxwell

model). The force transmitted would be F = kx + cx for the Voigt

model. The force transmitted for the Maxwell model is given by

F - cx1 where

k
X1 - x - x13 (216)

c

Hence additional dynamic properties have been added due to the joint

model.
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Additional models can be generated by a combination of the two

simple elements described above or more conveniently described in

terms of the two elements, the Voigt and the Maxwell model. A four

element joint model can be generated by a Voigt joint in series with a

Maxwell joint with different spring and damping constants in each part.

Alternatively one could consider two Maxwell joints in parallel, again

each one with its own spring and damping constants. Alternative four

element joint models are obtained by having a spring element, a

damper element and a Maxwell element all in parallel, or having two

Voigt joints in series. Three element joints can be derived from the

four element joints by letting one spring or damping constant approach

infinity.

Typically these models add dynamics to the joint. For a three

element elastic joint which is characterized by a spring in parallel

with a Maxwell model (spring and damper in series), the transmitted

force is given by

F - c 1 + kx (217)

where

kX,- - (x - x1 ) (218)

Hence a large variety of models are possible to approximate a

joint made with a viscoelastic material and which experiences no

slipping. The models discussed can all be represented by ordinary

linear differential equations.

A more general representation is suggested in Ref. 41 which can

include nonlinear contributions. For example if a dead band exists
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in the joint a proposed force model looks like
nn

F k0 + kx + cix + k x n + cn + k + c + F sign
Ii V L1)B DB f

+ glxI sign (c) (219)

where

'kDB (x -XDB) C DB x x DB < X

k B 0 { 0 -DB < x < XDB

IB (x + xDB) CDB x < - XDB

and g in the last term corresponds to the appropriate terms in eq. (215).

The generic form of the force equation (219) is suggested to be

F = k(x,x)x + c(x,x)x + k q(t) (220)

where

-t

q(t) = f Q(x,x) dt , (221)
0

and Q(.) represents some time history of the motion which contributes

to the "memory" of the material.

One form of the memory term which is linear that has been suggested

(see Ref. 41) is

= - pq + x(t) (222)

Then

q(t) eP(tr) x(i) d (223)

The above review represents the current thinking on models to

represent the effects of joints on the dynamic systems. Most

researchers consider the models which include local slipping the most
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accurate. Hence coulomb friction and its associated hysteresis loops

would be present in real systems. As indicated previously, these

effects have been observed in the laboratory (Ref. 35). It would seem

appropriate to consider a general model such as equation (220) and

fit the coefficients to match results of laboratory experiments. As a

last resort to obtain a model which would possibly admit analysis, the

viscoelastic models described by ordinary differential equations might

be the best procedure.

The inclusion of joint models in the state-space setting can be

simple or difficult, depending on the choice of joint model. In any

case numerical algorithms have not yet been developed for most of

these models. The main difficulty with coulomb friction models is

that the state-space system is a non-linear differential inclusion that

requires new theoretical tools (see Ref. 19).
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NUMERICAL RESULTS

In this section we report on a number of numerical experiments

for the control problems discussed in the previous sections. The goal

of this section is to demonstrate the basic features of the computa-

tional algorithms based on the state-space models. The numerical runs

presented below are intended to illustrate the technique and to point

out various difficulties associated with the different models.

We conducted six runs on the slewing beam-tip-body problem and

one run on the plate control problem.

BEAM PROBLEMS

For the purposes of this report we selected a beam (aluminum)

with the following characteristics:

L = 30 ft. (length of the beam)

B - 1 ft. (width of the beam)

h - .02083 ft. (thickness of the beam)

IA = 981 slug 
ft. 2

o 5.24 slug/ft.
3

mc = .327 slug

I = Bh 3/12 = 7.53520 x 10- 7 ft.'

E = 1.44 x 10 9 lb/ft. 2

A = Bh - .02083 ft.
2

K' - .84746

G - 5.76 x 108 lb/ft. 2

I c .3 slug ft. 2

c
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Note that

EI - 1,085.069 lb ft.
2

and

K'AG - 10,169,519.98 lb.

The control problem was solved for the Euler-Bernoulli beam using

"strain sensors" located at

Xl - 0 , x 2 - .3L

and "velocity sensors" located at

i = .5L 2  .L

Thus, for the Euler-Bernoulli beam there are eight outputs and the

weighting matrix is set to be the diagonal matrix

SE : dia (100, 100, 102, 102, 102, 102, 100.2, 100.2) (224)

For the Timoshenko beam we measured the mean values at X, - 0,

X2 - .3L of z7 (t) - [*x(t,x)l and z8 (t) -u x(t,x) - *(t,x)] and mean

values at il = .5L, i2 - .7L of z5 (t) - [ut (t,x) + xw(t)] and z6(t) =

4t (t,x) + w(t)). Therefore, the weighting matrix is the diagonal

matrix

S T = dia (100, 100, 10, 10, 102, 102, 100.2, 100.2, 100, 100, 100, 100) (225)

When actuator dynamics were included we also "sensed" the actuator

position x1 (t) and velocity x2 (t). Weights of 1.0 were placed on these

states so that for the Euler-Bernoulli beam with actuator dynamics

the weighting matrix becomes

SED 0 d Ea (S., 1.0, 1.0) , (226)
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and for the Timoshenko beam with actuator dynamics the weighting matrix

becomes

STD = dia (S , 1.0, 1.0) (227)

The weight on the control is always taken to be R = 1.

We considered actuator dynamics with and without delays. For the

model without delays the system parameters were set at (see equations

(19) - (26))

a ,, = - 00 a 12  = - 1 a 1  = 0 a 2 2  
=  0 (

(228)

b I = 1 0 c I = 1 0 c' = 0 r = 0

and for the delayed actuator we used the parameters

all = -100 a 12 = -1 a 21 = 0 a 2 . = -1.0

(229)
b I = 10 c1 = 10 c 2 = 0 r = 0.I

Comparison of Open Loop Systems

We started by comparing the open-loop systems corresponding to

the Euler-Bernoulli and Timoshenko beam models for various lengths of

the beam. We used the scheme described by equations (143) - (154) for

the Euler-Bernoulli beam and the scheme described by equations (161) -

(172) for the Timoshenko beam. We denote by N the number of "elements"

along the beam. More precisely, we sub-divide the interval [O,L] into

N equal subintervals and use cubic spline shape functions.

We added viscous damping to each model, so that all of the non-

zero eigenvalues had real part equal to (-.025). Both models have

two zero eigenvalues corresponding to the rigid body modes. We based

79



calculations on N = 4, 8, 16, 32 and 64 "element" approximate models

and compared the corresponding open-loop eigenvalues. We let

N N + N N (230)
J ,J

denote the jth eigenvalue of the dynamic operator 
AN

In Table 1 we show the imaginary parts of the first eight eigen-

values for an Euler-Bernoulli beam of length thirty feet. Using N

elements results in a system of order 2N + 4. Since there are two

zero eigenvalues, we also have N + 1 complex conjugate pairs. Compar-

ing the first three columns of Table 1 to the last, it appears that

using N elements gives a fairly accurate approximation to the first

N - 2 eigenvalues. Table 2 shows the open-loop non-zero eigen-

frequencies for the Timoshenko beam model.

Observe that the Euler-Bernoulli model gives more accurate

estimates to the low frequency eigenvalues and needs fewer elements

than the Timoshenko model in order to give accurate frequencies. As

we shall see later, this may cause numerical difficulties in the

control design if the Timoshenko model is used.

Recall that the Timoshenko model is more suitable for a short

beam (see Ref. 3). We considered the open-loop eigenvalue problem

for a I ft. beam to see if there was a significant difference between

the two models. These results are presented in Table 3 and Table 4.

Tables 3 and 4 show that for the short I foot beam, the Timoshenko

model produces more accurate frequencies than the Euler-Bernoulli

model. Note that the relative "error" between the eighth frequency

WS Z 40,244 and the 16 element model prediction based on the Euler-
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TABLE 1. Euler-Bernoulli Frequencies, L - 30 ft.

N 4 8 16 32 64

N
w1  0.48908 0.48908 0.48908 0.48908 0.48908

N
w2 2.1723 2.1700 2.1700 2.1700 2.1700

N
w3 6.1752 6.1077 6.1046 6.1044 6.1044

N
W4 12.431 12.077 12.049 12.047 12.047

N
w5 27.381 20.074 19.419 19.912 19.912

N
w6 - 30.129 29.543 29.520 29.519

N
W7 - 42.446 40.714 40.650 40.647

N
8- 57.314 53.392 53.238 53.231

TABLE 2. Timoshenko Frequencies, L = 30 ft.

N 4 8 16 32 64

N
wl 0.48961 0.48935 0.48914 0.48896 0.48884

N
w2 3.0544 2.4240 2.1752 2.1701 2.1701

N
w3 42.019 9.7023 6.249 6.1065 6.1045

N
W 278.57 33.435 13.250 12.065 12.047

N
W5 1219.30 111.35 24.925 19.996 19.913

N
w6  - 321.49 43.393 29.806 29.522

N
W7 - 834.22 77.314 41.413 40.656

NW8 - - 144.56 55.019 53.252
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TABLE 3. Euler-Bernoulli Frequencies, L - 1 ft.

N 4 8 16 32 64

N
w I  52.463 52.463 52.463 52.463 52.463

N
w2 215.44 215.44 215.44 215.44 215.44

N
w3 2,297.20 2,293.5 2,293.3 2,293.3 2,293.3

N
W4 6,326.20 6,218.3 6,213.8 6,213.6 6,213.5

N
w5 12,496.0 12,162.0 12,121.0 12,119.0 12,119.0
NN - 20,232.0 20,001.0 19,991.0 19,991.0

N - 30,791.0 29,867.0 29,833.0 29,831.0

N
8 - 44,158.0 41,746.0 41,644.0 41,639.0

TABLE 4. Timoshenko Frequencies, L -1 ft.

N 4 8 16 32 64

N
wi 52.462 52.462 52.462 52.462 52.462

N
W2 215.31 215.31 215.31 215.31 215.31

N
W 3  2,343.6 2,287.6 2,286.8 2,286.8 2,286.8

N
W4  7,782.1 6.197.4 6,173.1 6,172.8 6,172.8

N
w5 28,281.0 12,260.0 11,982.0 11,979.0 11,979.0

N
w6 - 21,440.0 19,649.0 19,637.0 19,637.0

N 37,089 29,137.0 29,083.0 29,083.0

N
- - 40,436.0 40,245.0 40,244.0
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Bernoulli model w6 = 41,746 is 3.7%. On the other hand, the

Timoshenko 16 element model produces the estimate w1 6 = 40,436 so
8

that here the relative error is less than .5%.

We turn now to computing suboptimal gain operators. We consider

six beam models and one plate model. In each case the goal is to

compute an estimate of the optimal feedback gain operator. We used

the numerical schemes and state space formulations developed in the

previous sections.

MODEL 1: EULER-BERNOULLI BEAM; NO ACTUATOR

State-Space: Z = g defined by (41) - (42)

A = AE defined by (43) - (44)

B = 1 defined by (45)

C = CE defined by (121)

Optimal Feedback Operator:

KEzE(t) - K, e(t) + K2 w(t)

+ K [ut (t,L) + Lw(t)]

+ K4 [Uxt (t,L) + w(t)]

+ {L KS(x) [uxx(t,x)] dx

+ fL K6(x) [ut(t,x) + xw(t)] dx (231)
0

We used the approximation scheme (143) - (154) to construct the

finite dimensional system (150) - (151) and the corresponding approxi-

mate Riccati equation (134). Potter's method (see Ref. 20) was used
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to solve (134) and construct the approximating gain operator KN
E

defined by (140). Again, K will have the form
E

IN N N
K z E(t) = K1 6(t) + K2 W(t)

N1 [u (t,L) + Lw(t)]
t

+ K4 [uxt(t,L) + w(t)]

rN
+ K5(x) [u xx(t,x)] dx

N

+ 0K6(x) [u t(t,x) + x,,(t)l dx .(232)

The convergence of KN to K is equivalent to the convergence of the

four gains

N N N N
K- K1 , K2 - K2 , K3 - K 3 , K4 K4

in R and the two functional gains

K5  (x) (x) - K5(x) , K6(x) - K6 (x)

in L2 (O,L).

N
Table 5 shows the convergence of K. to K. for i = 1, 2, 3, 4 and

N N

N = 8, 12, 16, 32. Note that KN and K have "converged numerically for

N N
N = 16 while K3 and K4 seem to converge more slowly.

TABLE 5. Sub-optimal Gains; MODEL 1

NN N N
N K 1  N KK

8 - 10.0000 - .47911 4.0716 - .24652
12 - 10.0000 - .47915 4.0352 - .19589
16 - 10.0000 - .47916 4.0276 - .18769
32 - 10.0000 - .47916 4.0155 - .18376
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N
Figure 4 shows the convergence of the functional gain K5(.).

Observe that K16 (.) and K3 2(-) are almost identical and hence we do5 5
N

not show K6 4 (.). Figure 5 shows the convergence of K6 (.). Again,
5

there is no difference between K64(.) and K3 2 (.) so we plot only the6 6

N = 32 functional gain. Table 6 shows the closed-loop eigenvalues for

N = 8, 16, and 32. Recall that the viscous damping model gives open-

loop eigenvalues X with Re(X) - - .025.

TABLE 6. Closed-Loop Eigenvalues; MODEL 1

N = 8 N = 16 N = 32

- .046444 + .047666 i - .046444 + .047666 i - .046444 + .047666 i

- .19907 + .44751 i - .19907 + .44751 i - .19907 + .47751 i

- .04155 + 2.1694 i - .041547 + 2.1693 i - .041547 + 2.1693 i

- .026758 + 6.1076 i - .026758 + 6.1045 i - .026758 + 6.1043 i

- .025423 + 12.078 i - .025419 + 12.049 i - .025419 + 12.047 i

- .025136 + 20.074 i - .025136 + 19.919 i - .025135 + 19.912 i

- .025109 + 30.129 i - .025106 + 29.543 i - .025106 + 29.520 i

- .025035 + 42.446 i - .025029 + 40.714 i - .025029 + 40.650 i

This example shows how the computational scheme can produce

excellent convergence for the basic problem with an Euler-Bernoulli

beam model. We turn now to the Timoshenko model.

MODEL 2: TIMOSHENKO BEAM; NO ACTUATOR

* State-Space: - ID defined by (53) - (54)

A - defined by (55) - (56'

B - B defined by (57)

C - Cr dhere
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n, 6(O)z8  MT (.5L)z, 24

I e L 1

Optimal Feedback Operator:

KT ZT (t) =K 1 e(t) + K2z w(t)

" K3 lut (tL) + Lw(t)]

" K4 14) (t,L) + w(t)]

+ fK 5 (x) [ut(t,x) + L(t]dx

rL
+ IK,,(x) [ t(t,x) + ,,(t)1 dx

'0

+ JK3(x) [u x(t,x) - p(t,x)] dx (235)
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We now use the approximation scheme defined by (161) - (172) to

construct the finite dimensional model (171) - (172) and the cor-

responding Riccati equation (134). Again, Potter's method was used

N
to compute the approximating gain operator T and as in the Euler-

Bernoulli case 4 has the same form as KT .

N
Table 7 shows the convergence of K to K. for i 1, 2, 3, 4.

i I
N N N

Observe that as in the Euler-Bernoulli beam K1, K2 and K3 behave

nicely. The convergence of KN is not as rapid.

TABLE 7. Sub-optimal Gains; MODEL 2

N N K N
SK 2  K3  4

8 - 9.9996 - .48306 4.2078 .55767

12 - 9.9996 - .48075 4.2090 .34931

16 - 9.9984 - .48025 4.1900 9.9691 E-3

32 -10.023 - .48373 4.1721 -8.7446 E-2

The convergence property of the functional gains for the

Timoshenko model is not as well-behaved as in the Euler-Bernoulli

model. At this time we do not have a full understanding of this

problem. There may be several reasons for this slow (or non-) con-

vergence, including numerical roundoff and the failure of the Timoshenko

model to approximate "long thin" beams (see the lecture notes by

Taylor, Ref. 42). Figures 6 through 9 show plots for the functional

N N N N N
gains K 5 (.), K6(.), K7 (.) and K8 (.). Note that K (-) seem to remain

N
close for N - 8, 12 and 16 and i - 5, 6, 7 and 8. Only KB(.) seems
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to be converging in a monotone fashion for N - 8, 12, 16 and 32.

Although the functional gains do not seem to "rapidly converge", the

closed-loop eigenvalues do appear to be correct in that the N = 32

sub-optimal gain produces reasonable closed-loop eigenvalues. This

is illustrated in Table 8.

TABLE 8. Closed-Loop Eigenvalues; MODEL 2

N =8 N - 16 N = 32

-.046441 + .047660 i -.046426 + .047675 i -.046620 + .047618 i

-.19916 + .44774 i -.19934 + .44741 i -.19926 + .44733 i

-.042086 + 2.4236 i -.041603 + 2.1746 i -.042331 + 2.1694 i

-.027471 + 9.7022 i -.026820 + 6.2488 i -.027401 + 6.1064 i

-.025743 + 33.435 i -.025451 + 13.250 i -.025764.+ 12.064 i

-.025414 + 111.35 i -.025213 + 24.925 i -.025232 + 19.996 i

-.025099 + 321.49 i -.025110 + 43.393 i -.025061 + 29.806 i

-.025069 + 834.22 i -.025072 + 77.314 i -.025067 + 41.413 i

MODEL 3: EULER-BERNOULLI BEAM; ACTUATOR, NO DELAY

- State-Space: Z - Z* defined by (63) - (64)
E

A - A0 defined by (65) - (66)

B - Bo defined by (67)

and

CoZ* C xI  xI  (236)

E0 E E0

x2 x2
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* Optimal Feedback Operator:

K E0z;(t) = KE zE(t) + K7XI(t) + K8X2 (t)

= K1 6(t) + K2 w(t)

+ K3 [ut (t,L) + Lw(t)]

+ K4 [Uxt (t,L) + w(t)]

+ I K5 (x) [uxx(tx)] dx
0

+ K6 (x) [ut(tx) + xw(t)] dx

+ K7x (t) + Kx 2(t) . (237)

Note that the only difference between MODEL 1 and MODEL 3 is the

addition of the actuator states x1 (t) and x2(t). Table 9 shows the

convergence of the gains K for i 1 1, 2 3, 4, 7 and 8. Observe that
i

the convergence of each of the finite sub-optimal gains is much faster

than for the case with no-actuator dynamics (compare to Table 5).

TABLE 9. Sub-optimal Gains; MODEL 3

N NN
S Ki K2  K3  K4  K7  K8

8 -10.000 -.47902 4.1250 -1.4946 E-2 -.54392 -.95773

12 -10.000 -.47902 4.1241 -1.5977 E-2 -.54392 -.95773

16 -10.000 -.47902 4.1242 -1.6004 E-2 -.54392 -.95773

32 -10.000 -.47902 4.1241 -1.6061 E-2 -.54392 -.95773
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The addition of actuator dynamics also increased the rate of con-

N N
vergence for the functional gains K 5(.) and K6 0). This is shown in

Figures 10 and 11. In Figure 11 only the graph of Kg 2(') is shown.

The graphs for N - 8, 12, 16 and 32 are not distinguishable on the

scale shown. The addition of actuator dynamics changed the gains as

expected. However, we did not expect to see the increase in con-

vergence of the functional gains. We do not fully understand the

reason why the addition of actuator dynamics would improve the

numerical convergence of the optimal gains.

As expected, the addition of actuator dynamics does affect the

location of the closed-loop eigenvalues. However, as shown in Table

10 the closed-loop eigenvalues of the Euler-Bernoulli beam with

actuator dynamics are almost the same as the closed-loop eigenvalues

for the Euler-Bernoulli beam without actuator dynamics (see Table 6).

Observe that the second-order actuator introduces two open-loop eigen-

values at

XA - -.50 t 9.9875 i

Table 10 gives the closed-loop eigenvalues for the actuator mode and

the next seven frequencies.
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TABLE 10. Closed-Loop Eigenvalues; MODEL 3

N = 8 N = 16 N = 32

-5.050 + 8.665 i -5.050 + 8.665 i -5.050 + 8.665 i

-.0463 + .0475 i -.0463 + .0475 i -.0463 + .0475 i

-.1982 + .4470 i -.1982 + .4477 i -.1982 + .4477 i

-.0420 + 2.169 i -.0420 + 2.169 1 -.0420 + 2.169 i

-.0272 + 6.108 i -.0272 + 6.104 i -.0272 + 6.104 i

-.0253 + 12.077 i -.0253 + 12.049 i -.0253 + 12.047 i

-.0250 + 20.074 i -.0250 + 19.919 i -.0250 + 19.912 i

-.0250 + 30.129 i -.0250 + 29.543 i -.0250 + 29.520 i

MODEL 4: EULER-BERNOULLI BEAM; ACTUATOR DYNAMICS WITH DELAY

" State-Space: Z = 7E defined by (69) - (70)

A = A defined by (71) - (72)

B = B defined by (73)

C = CE defined by (236)

" Optimal Feedback Operator

K z(t) = K zo(t)

ED EO E

+ K (s) ,(s)ds + r Kio(s) P:(s)ds

Since we have set a21 = 0, one can show that K-)(s) 0 (see Refs. 6 and

13). This choice is made merely to reduce some of the computational

burden.
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In this case the approximation scheme [see eqns. (175) - (183)]

involves a spatial discretization parameter [NJ, and a 'past-history'

parameter [M]. Based on our earlier study of this model [see Ref. 1],

we have chosen to present results only for the value M - 8. As before,

Potter's method was used to compute a solution for the Riccati equation

(134) and the approximating gain operator was constructed. The gain

N,M
operator Ki has the form [see eqn. (126))

N,M .NM eNt M
K6 zED WzK1 (t) + KZ' w(t)

N ,M
+ K3

'  [ut (t,L) + Lw(t)]

+ KN' M [U xt(t,L) + w(t)]

+IL N,M+ KS (x) [u xx(t,x)] dx

+LN ,M

+ K6 '(x) u t(t,x) + xw(t)] dx

N M NM
+ K7 ' x1 (t) + K8 'x 2 (t)

+ K9'M(s) *i(s) ds

+ f K (s) 2(s) ds

-r

As noted above, with a21 - 0 in the 'delay' matrix A2 it can be shown

that KN'M(s) - 0. The structural differences between this model and

MODEL 3 is the functional gain K1 0(s) and the dependence on two

discretization parameters (N and M].
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Table 11 shows the cotivergence of the gains KN' 0 for i = 1, 2, 3,

4, 7 and 8. As expected, the results are quite similar to the MODEL

3 case [c.f. Table 9].

TABLE 11. Sub-optimal Gains; MODEL 4

N K N, N, KN 8  KN, -( K ,8K 51 3 4 7 8

8 -10.000 -.47888 4.1044 -3.3480 E-2 -.56202 -.94504

12 -10.000 -.47888 4.1034 -3.4480 E-2 -.56201 -.94504

16 -10.000 -.47888 4.1035 -3.4500 E-2 -.56201 -.94504

32 -10.000 -.47888 4.1034 -3.4554 E-2 -.56201 -.94304

The graphs of the functional gains KNM(x) and K6M(x) are shown in

Figures 12 and 13, respectively. These differ very little from the

corresponding results in MODEL 3 (see Figures 10 and 11). Figure 14 dis-

N E
plays the gain functional for the history term Kibj(s). The results for

N = 8, 12, 16 and 32 are indistinguishable. Note that the history

variables have been approximated using the "AVE" scheme with M = 8.

Thus, the graph shown in Figure 14 is a piecewise constant approxima-

tion for Kio(s) and the interval [-.1,01 has been partitioned into eight

subintervals.

The closed-loop eigenvalues for the 'actuator mode' and the first

seven 'structural modes' are virtually identical to those shown in

Table 10. It should be noted that this model also includes some

approximations for the "past history modes". For this case these have
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significantly higher damping than the other modes.

MODEL 5: rIMOSHENKO BEAM; ACTUATOR DYNAMICS WITH NO DELAY

* State-Space: Z = - defined by (76) - (77)

A = A 0 defined by (78) - (79)

B = B0 defined by (80)

C = CO,

where CO has the block structure

ST 00
Co  0 1 0 (238)

0 0 1

and C is given in (233) - (234).

* Optimal Feedback Operator

K z T(t) = K1 0(t) + K 2 w(t)

+ K 3 [ut(t,L) + Lw(t)]

+ K4 [1t (t,L) + w(t)]

+L K5 (x) [ut (t,x) + xw(t)] dx

+ K6(x) '*t (tx) + w(t)] dx

" -L K7(x) [ ,x(t'x) ] dx

0

" L K8 (x) fux(t,x) - i(t,x)] dx

" Kq x1 (t) + K 10 x2(t) (239)
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As in the previous cases we employ the approximation scheme to

construct the finite-dimensional model (185) - (187). Potter's method

is used to compute the approximate gain operator KN  which has the
TO

same form as KrO [see eqn. (239)].

Table 12 shows the convergence of the gain values K for i

1, 2, 3, 4, 9 and 10.

TABLE 12. Sub-optimal Gains; MODEL 5

N K1  K2  K3  K~4  V K10

8 -10.000 -.47759 3.0496 -.49331 -.54523 -.95785

12 -9.998 -.47927 4.1594 .10191 -.54459 -.95779

16 -9.999 -.47982 4.1898 1.5195 E-2 -.54488 -.95782

32 -10.002 -.47992 4.2168 1.9758 E-2 -.54506 -.95783

The first four gains behave very much like their counterparts in the

case without an actuator [see Table 7]. The actuator gains also

compare well with the values for the corresponding Euler-Bernoulli case

N N[c.f. gains K7 and K8 in Table 9].

N
The convergence results for the functional gains Ki , i - 5, 6, 7,

8 are shown in Figures 15 through 18, respectively. These gains appear

better behaved than the case with no actuator [MODEL 2] but still not

as good as the Euler-Bernoulli case (MODEL 3]. The closed-loop eigen-

values are shown in Table 13. The actuator mode is identical to

the corresponding Euler-Bernoulli case [MODEL 31, while the structural

106



7 MI I OW

4 40

0 5 i Z 2025 3

I. x
Figure 15. Funct~ioa GinK ;Mde 5

0 5 10 172



mie6 6X

5-

2-

K

I -

0 ' 5203

'9x

Fiur 16.ucinlGa oe

-10



Noel K7T

0.02

0.015 /
J .

/ "

0.01 7

0.005 " - ,

N I

-0.005 ' is

-- N=O '

-0.01 %] ... N-12

-0.015 -.- 11,,16 s

I

-.0.02 ',

-0.03 '
0 5 to 20 25 30

x
Figure 17. Functional Gain K7 ; Model 5

109



Noel5, K8
0.005

0

:

I

-0.00
K Ii "~:0 I'

-0.02-

ix"

-0.03,
0 5 10 0 20 a30

x
Figure 18. Functional Gain K, Model 5

110



TABLE 13. Closed-Loop Eigenvalues; MODEL 5

N = 8 N = 16 N = 32

-5.049 + 8.665 i -5.050 + 8.665 i -5.050 + 8.665 i

-.0463 + .0475 i -.0463 + .0475 i -.0464 + .0475 i

-.1982 + .4479 i -.1985 + .4477 i -.1984 + .4477 i

-.0427 + 2.4235 i -.0421 + 2.1745 i -.0420 + 2.1694 i

-.0276 + 9.7022 i -.0273 + 6.2488 i -.0275 + 6.1063 i

-.0250 + 33.435 i -.0252 + 13.250 i -.0253 + 12.065 i

-.0250 + 111.347 i -.0250 + 24.925 i -.0250 + 19.996 i

-.0250 + 321.485 i -.0250 + 43.393 i -.0250 + 29.806 i

modes are almost identical to the Timoshenko beam without actuator

dynamics [MODEL 2].

IODEL 6: TIMOSHENKO BEAM; ACTUATOR DYNAMICS WITH DELAY

* State-Space: : = 2T defined by (81) -(82)

A = A defined by (83) - (84)

B = B defined by (85)

C = CTD,

where

CTD = [Co, 0 0]

and Co is given by (238).

- Optimal Feedback Operator

z(t) = Kr0 z (t)

+ 0 r Kj1 (s) pl(s) ds + '-r K12(s) (s) ds ,

lii



where (,, is defined by (239).

As in MODEL 4 we have a two-stage approximation scheme involving

both a spatial discretization parameter (N], and a past-history

parameter EM]. Again we present numerical results for the case M - 8.

We employ the approximation scheme described by equations (185) - (187)

and use Potter's method to solve the appropriate Riccati eqn. (134).

The gain operator has the form

NM N M'
K"z (t) - Kj'M e(t) + W'I w(t)

+ K3M [ut(tL) + Lw(t)]

+ K4'M [*t(tL) + w(t)]

+ jo K5'M (x) (ut(tix) + xw(t)] dx

+ r" K6' H (x) [*t(t,x) + w(t)] dx0

+ f 7 ' M (x) [,x (tx)] dx
0x

L KN, M

+ 1L KeM(x) [ux (t.x) - *(tx)] dx

+ K ' xl(t) + K16 x2(t)

+ K11' (s) x1 (t-s) ds
-r

+ J K11 M (s) x2(t-s) ds (240)
-r

As was noted for the case of the Euler-Bernoulli beam with delayed

actuator (MODEL 4], the special choice a21 - 0 in the delayed actuator
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model implies that the gain functional associated with the delayed

term xl(t-r) is identically zero. Thus, to approximate the gain

operator we must compute the six gain values KN 'M for i = 1, 2, 3, 4,i
NM

9 and 10, and the five functional gains K.' , i = 5, 6, 7, 8 and 12.

Table 14 shows convergence of the gain values (recall M = 8)

for N = 8, 12, 16 and 32. The trends in this problem are very similar

to the case without the delay [c.f. Table 12].

TABLE 14. Sub-optimal Gains; MODEL 6

N,8K 4  N,8 i

%; N,8 N,8

8 -10.000 -.47771 3.1485 -.42911 -.56338 -.94517

12 -10.001 -.47926 4.1686 .10434 -.56277 -.94511

16 -10.000 -.47968 4.1756 -3.028 E-4 -.56300 -.94513

32 -10.003 -.48239 4.2755 8.047 E-2 -.56669 -.94547

The spatially distributed gains are shown in Figures 19 through

22. These exhibit the same behavior we have seen in the

previous Timoshenko beam models [MODELS 2 and 5]. The history gain

N P
KI A, is shown in Fig. 23 and is virtually identical to the correspond-

ing gain functional for the Euler-Bernoulli model with delayed

N
actuator [see K,0 (s) in Fig. 141.

While the spatial gains do not behave very well for this

Timoshenko model the closed-loop eigenvalues seem to be converging

nicely, especially for the lower frequencies.
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TABLE 15. Closed-Loop Eigenvalues; MODEL 6

N =8 N = 16 N = 32

-5.526 + 9.064 i -5.526 + 9.064 i -5.526 + 9.064 i

-.0463 + .0475 i -.0463 + .0475 i -.0463 + .0476 i

-.1982 + .4480 i -.1985 + .4477 i -.1984 + .4476 i

-.0425 + 2.4235 i -.0419 + 2.1745 i -.0427 + 2.1695 i

-.0275 + 9.7022 i -.0272 + 6.2488 i -.0280 + 6.1064 i

-.0250 + 33.435 i -.0252 + 13.250 i -.0253 + 12.065 i

-.0250 + 111.347 i -.0250 + 24.925 i -.0250 + 19.996 i

-.0250 + 321.485 1 -.0205 + 43.393 i -.0250 + 29.806 i

Note from Table 15 that the actuator mode has somewhat higher damping

and frequency than for the Timoshenko model without delay [MODEL 51;

they are also higher than either of the relevant Euler-Bernoulli models

[MODEL 3 and 4]. The structural eigenvalues are virtually identical to

the previous Timoshenko modes [see Tables 8 and 13].

MODEL 7: ISOTROPIC PLATE

The model, as described previously, can be written as the

second-order partial differential equation

m u (t,x,y) = D u(t,x,y) + u(t) (x,y) (241)
tt

Here m is the plate mass, per unit area, so that m = Ph where o is

the mass density of the plate material and h is the plate thickness.

The stiffness parameter D is given by

D = [12 (1 - vz)
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where E is Young's modulus for the plate material and v is Poisson's

ratio. The symbol A denotes the Laplacian operator. The function

describes the (fixed) distribution of the applied control force and

u(t) is the control. The plate has length a in the x direction and

b in the y direction. Internal damping is modelled in the Kelvin-

Voigt form. Thus, the right-hand side of (241) is modified by the

addition of a term

e [al t

For simplicity the parameters taken for the numerical calculations

are D - m - a - b - 1. The force distribution function is

O(x,y) - 1 - [4 (x - 1/2)(y - 1/2)]2 , (242)

and the damping parameter e is 10-4 .

Following the procedures outlined in Section IV the appropriate

state-space model is

State-Space: Z- 2 defined by (92) - (93)p

A - A defined by (94) - (95)p

B - B defined by (96).p

Before discussing numerical results for the control problem we first

demonstrate the model with no input (open-loop). The approximation

scheme is given by equations (196) - (200). In all numerical results

we use equal numbers of divisions along the x and y plate axes

(i.e., N - N - N). The dimension of the approximating subspace isx y

2(N - 1)2. With the parameters taken at unit value the frequency of

undamped motions of the clamped plate can be shown to be given by
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[see Ref. 5, p. 4951.

W= 72 (m2 + n 21 (243)

m,n 1,2,...

TABLE 16. Open-Loop Frequencies; MODEL 7

m n N = 4 N = 8 "texact"

1 1 19.7428 19.7394 19.7392

1 2 49.5106 49.3556 49.3480

2 2 79.2358 78.9707 78.9568

1 3 101.2630 98.7953 98.6960

2 3 130.7811 128.4034 128.3049

3 3 181.9428 177.8226 177.6529

Table 16 shows a comparison of the exact and computed frequences for N =

4 and 8. It should be noted that due to the geometric symmetry the

"off-diagonal" modes (m # n) come in pairs. Only one such mode is

shown in Table 16, thus with N = 4 we have actually estimated nine

modes.

The final information needed to define the control problem is

specification of the cost function. The standard quadratic functional

in the form (104) is used with control weight R taken as unity,

output map C given by

ut(t,x,y) 1e(.,.2)(A u(t,x,y)
1C~~~ Me = .,7f I~,,Y (244)

and diagonal weights S - diag [1.,1.].
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The first controlled output is thus the "strain" (measured by the

Laplacian of the displacement) at x y - .2, while the second output

is the velocity at the point x = y = .7. The feedback operator for

this model is from (179)

Kz Wt) Kl(x,y) A u(t,x,y) dx dy

+ f K2(x,y) ut(t,x,y) dx dy

Following the same procedures as for the previous models, we employ

the approximation scheme (196) - (202) to construct an approximate

N Ngain functionals KI(x,y) and K2(x,y). Just as in the open-loop fre-

quency calculation we have used the same discretization parameter for

the two spatial variables (i.e. N = N = N). Recall that the
x y

approximating system has dimension 2(N - 1)2.

We employ Potter's method to construct a solution of the Riccati

equation and then compute the functional gains.

NFigures 24-26 present the graphs of KI(xy) for N - 4, 8 and 12.

Since these functionals depend on two independent variables each N

value is a separate plot. To provide some comparison we show values

Nalong the line x - y for KI(x,y), N - 4, 8 and 12 in Fig. 27.

Figures 28-30 present the results for the second functional gain

NK2 (x,y), N = 4, 8 and 12. Again the section at x = y is compared for

all three N values in Fig. 31.

The closed-loop eigenvalues are shown in Table 17. These all

appear to be "converging", except for the damping in the low

frequency mode which suddenly jumps at N = 12.
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TABLE 17. Closed-Loop Eigenvalues; MODEL 7

N =4 N =8 N =12

-.274 + 19.746 i -.269 + 19.743 i -1.767 + 19.664 i

-.123 + 49.511 i -.122 + 49.356 i -.122 + 49.349 i

-.314 + 79.236 i -.311 + 78.971 i -.312 + 78.959 i

-.513 + 101.263 i -.488 + 98.795 i -.487 + 98.712 i

-.855 + 130.781 i -.824 + 128.403 i -.823 + 128.320 1

-1.655 + 181.943 1 -1.581 + 177.823 i -1.579 + 177.678 1

131/132



SOFTWARE ISSUES

As part of preparing the numerical studies reported earlier it

was necessary to develop the related research software. Since the

MODELS studied are interrelated [i.e. Euler-Bernoulli and Timoshenko

beam models; actuator models with and without delays] some effort was

devoted to organizing the software in an efficient way. The objective

of this section is to report on this structure in the set of software

procedures. We also assess what additions and enhancements would be

needed to provide a reasonable environment for studying linear

quadratic regulator synthesis in a class of models including combina-

tions of the beam and plate models studied here.

Starting from the quadratic regulator synthesis procedure, the

fundamental step is the solution of a rather large matrix Riccati

equation. As noted previously, the procedure used is an implementation

of Potter's method (see Ref. 20). The main calculations required in

this method include finding the eigenvalues and eigenvectors cf a

Hamiltonian matrix and solving a linear system. Our implementation

employed standard IMSL (Version 10) routines for these calculations.

In order to use the same procedure for all the dynamical systems

it was helpful to think of the Potter procedure as an 'operator'

which "transforms" data files. This idea of a 'filter' or pipeline

has been engendered by growing popularity of the UNIX operating

system. It is very useful for the simplicity it produces when a

variety of procedures are involved.
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Specifically in the Potter procedure we envision a data set

consisting of the system matrices A, B and C in the now familiar

description

c(t) - A x(t) + B u(t)

y(t) - C x(t) (245)

The code reads in the matrices, including the integer variables

describing the size of each matrix. After the calculation is complete

the code writes a file consisting of the optimal gain values K. Other

information, including closed-loop eigenvalues, is also written.

Once the gain matrix is known for a certain approximation it is

still necessary to construct the components of the gain operator (i.e.

the gain values and the functional gains, see eqns. (123),

for example).

To understand this calculation it is helpful to recall that our

finite-dimensional models in the form [245] are coordinate

representations of infinite-dimensional systems. That is, the 'state'

of the system is given by

N NzN) W - x i(t) ei (246)

where the e are the basis vectors chosen for a particular representa-

tion [see eqns. (145) - (148), for example].

The matrix gains computed by the Potter procedure give the

optimal control as

u (t)W- K Nx(t) ,(247)
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where the matrix K has one row for each control component (a scalar

for our examples). In terms of the state-space one has

N* N N
u (t) = K z (t) (248)

and the task is to 'compute' the operator K. In our Hilbert space

setting a bounded linear functional can be represented as an inner

product so that the control can be expressed as

N* N N
u (t) - <K , z (t)>zN (249)

N N
where K eZ

Combining the representations given by equations (247) and (249)

one has

K x <, xi eZN (250)

Since (250) must hold for all x and since hN can be represented in terms

of the basis {e N as
i

I- i eN (251)

equation (250) leads to

GN 8= [KN] T  (252)

where GN is the Gram matrix

GN(ij) - <ei  j, ZN > (253)

Once the 0 coordinates have been determined one uses the basis

elements to compute the 'operator' le. For the results presented in the

previous section, these calculations were done on a PC using the MATLAB

software. This provided a convenient mechanism for generating the
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plots for the various functional gains.

As noted in the Numerical Procedures section the beam models

with actuator dynamics can be 'naturally' constructed from the

original models and the necessary 'data' describing the actuator.

Thus, in its final form our "beam" software set has a single procedure

that reads data files describing the appropriate beam model. This

data is combined with the actuator description to produce a system in

the form (245). This data is written to a file so that it can be

read by the Potter procedure.

The software set contains two codes for producing the beam

models. Each procedure reads the same 'data' file to describe the beam

properties. Since the Timoshenko model requires several parameters not

utilized by the simpler Euler-Bernoulli model this practice may seem

strange. It was adapted so that we could be sure that the two models

were given consistent data. This greatly facilitated the comparison

reported in the beginning of the Numerical Results Section. The two

beam procedures, called Euler and Timo, produce data files containing

the A, B and C descriptions needed by Potter (or by the procedure to

add actuator dynamics). The plate procedure also produces a file of

this type.

Except for the final gain 'operator' calculations, all of the

codes used in the study were written in FORTRAN-77. The A, B, C

'system' files produced by the beam and plate procedures can be quite

large. Since these are most often not read by the analyst, it was

decided to write them as unformatted files. For debugging purposes

it was convenient to include a simple procedure to generate a human
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readable file from this data.

The seven FORTRAN procedures developed for the numerical experi-

ments are:

EULER: Assembles (A,B,C) system description for Euler-Bernoulli beam

model

TIMO: Assembles (A,B,C) system description for Timoshenko beam model

ACT: Assembles (AB,C) system description for beam model with

actuator dynamics

PLATE: Assembles (A,B,C) system description for isotropic plate model

POTTER: Reads (A,B,C) description, computes matrix Riccati solution

and feedback gain matrix

GAIN: Reads gain matrix and Gram matrix, computes coordinate

representation of gain operator

RSYS: Reads unformatted (AB,C) system description and writes out

formatted version of the same

As a final consideration we briefly discuss the possibility of

generating a research code for use in studying LQR optimal feedback

controllers for a class of systems consisting of beam elements and

rigid bodies coupled with joints and actuators. For definiteness we

consider only two-dimensional planar models.

Among the first issues to decide is which 'elementary' structures

are to be allowed and then precisely how are they to be characterized.

For discussion purposes we propose to include
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Euler-Bernoulli beams

Timoshenko beams

Rigid bodies

Force/torque actuators

Since we are suggesting a linear dynamical model, it is clear that

some features of the motions are not included.

Before beginning a discussion of some of the technical issues at

stake, it is important that we make clear that we are not contemplating

a computer code that generates a finite-dimensional (A N,B N,CN )

approximating model for such a class of systems. The experience

reported in Ref. (2) should make clear that such simulation models can

be treacherous when used in control problems. Rather we have in mind

a computer aided procedure for assembling an infinite-dimensional,

state-space model from the "elementary" models for the constituent

pieces of the system.

The use of signal-flow graphs or block diagrams to construct

models including feed forward and feedback elements are a weak

paradigm for the process we have in mind. The parallel is weak because

in the present situation one has to realize that not all inter-

connections of the elementary systems are permissible. This is because

the interconnections amount to imposing certain boundary conditions

on the adjoining elements. It should be clear from the state space

modelling uiscussed in that section that these boundary conditions play

a crucial role in the formulation. In our approach, the boundary

conditions have an effect on the state space 2 [see the plate model,
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eqs. (87) and (92)] and, more commonly, on the generator A through its

domain [see the Euler-Bernoulli model, eqn. (44)].

One aspect of the problem is a system theoretic issue: given a

collection of dynamical systems [Ei, consisting of operators A., B.

and Ci and appropriate spaces Zig etc.], under what conditions does

an interconnection produce a dynamical system? What is the composite

state-space? Loosely, one expects that a combination of two systems

Yl and E2 would result in a product space Z = 21 x B2. The boundary

conditions, however would tend to make the correct space smaller, that

is the space is some proper subset of 2. We are proposing that one

could provide an automated procedure for constructing the composite

system Z.

One key aspect of such a procedure is a convenient graphics en-

vironment for the user interface. A combination of icons and 'pop-

open' windows would provide cues for the required data. A number of

currently available system modeling packages provide such interfaces.

A second requirement is an underlying geometry manager that would

assemble the necessary mappings from the local geometry of the

individual elementary systems to the 'world' coordinates of the

complete system. The final need is the procedure that constructs the

composite state-space model. Since not all system connections are

permissible, this module would need special care to present the user

with suitable prompts and diagnostics should an inadmissible connection

be requested.

In summary we note that the software we have in mind does not

simply construct a finite dimensional approximation for the system
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(that is a simulation model). Rather it is our strong belief that
for control problems one should retain the true (infinite-dimensional)

system model as long as possible. Numerical approximations are to be
introduced only at the last step, just prior to computation.
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CLOSING REMARKS

We have constructed state space models and computational

algorithms for control of seven structural vibration problems.

Convergence of feedback operators is dependent upon the numerical

schemes satisfying (131) - (132) and (133) - (137). As indicated

above all of these conditions can be rigorously established for MODELS

1, 3 and 4. Conditions (131) - (136) can be proven to hold for all of

the model problems considered in this report. However, condition

(137) is more difficult to handle. In fact, numerical evidence seems

to indicate that (137) may not hold for the standard finite element

approximation of the Timoshenko beam models (see Figures 7, 16 and

20) and for the finite element approximation of the plate (see Figures

24, 25, 26 and 31). This is an unsolved problem. If one can show

that (137) does not hold for these schemes, then this would raise

several practical problems involving the use of finite element models

in control design. This is an area of research that needs further

study.

The results in this paper show that practical software tools

for control design can be constructed for problems that include

actuator dynamics and time delays as part of the complete model.

This integrated approach has many advantages and a few limitations.

However, there are several practical and theoretical questions that

must be answered before a "computer aided package" could be developed

into a useful design tool. These questions are particularly important
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when dealing with Timoshenko beams and plates. More fundamental

research, numerical experimentation and laboratory experiments are

needed.
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